edited by
29,324 views
67 votes
67 votes
Consider the recurrence relation $a_1 =8 , a_n =6n^2 +2n+a_{n-1}$. Let  $a_{99}=K\times 10^4$. The value of $K$ is __________.
edited by

10 Answers

1 votes
1 votes

let generating function of given recurrence equation is $G.$

$a_1=8 \implies a_0 = 0 $ ( by substituting in the given equation )

$a_{n} = a_{n-1}+ 2n \;+\;6n^{2} $

$\sum_{n=1}^{\infty}\;a_{n}.x^{n} = \sum_{n=1}^{\infty}\;a_{n-1}.x^{n} + 2\; \sum_{n=1}^{\infty}\;n.x^{n} \;+\;6\;\sum_{n=1}^{\infty}\;n^{2} .x^{n} $

$G-a_{0} = x.\sum_{n=1}^{\infty}\;a_{n-1}.x^{n-1} + 2\; \sum_{n=1}^{\infty}\;n.x^{n} \;+\;6\;\sum_{n=1}^{\infty}\;n^{2} .x^{n} $

$G = x.G+ 2\;\dfrac{x}{(1-x)^{2}}\;+\;6\; \dfrac{x\;(1+x)}{(1-x)^{3}}\;$

$G-x.G = 2\;\dfrac{x\;(1-x)}{(1-x)^{3}}\;+\;6\; \dfrac{x\;(1+x)}{(1-x)^{3}}\; = \;\dfrac{8x+4x^2}{(1-x)^{3}}\; $

$G.(1-x) = \;\dfrac{8x+4x^2}{(1-x)^{3}}\; $

$G= \;\dfrac{8x+4x^2}{(1-x)^{4}}\; = (8x+4x^2).(1-x)^{-4} $

value of $a_{99}$ is coefficient of $x^{99}$ in the above generating function.

coefficient of $x^{99}$ in $ (8x+4x^2).(1-x)^{-4}$ = $\underset{first\; term}{\underbrace{8\times\binom{-4}{98}}}+\underset{second\;term}{\underbrace{4\times\binom{-4}{97}}} =8\times\binom{101}{3} + 4\times\binom{100}{3} = 1980000$


How $\sum_{n=1}^{\infty}\;n.x^{n} \text{  is equal to the generating function }\;\dfrac{x}{(1-x)^{2}} ?$

$\sum_{n=1}^{\infty}\;n.x^{n} = 1.x^{1} + 2.x^{2}+ 3.x^{3}+\dots = 0 + 1.x^{1} + 2.x^{2}+ 3.x^{3}+\dots$

$\therefore \;\;generating \;\;seq. < 0,1,2,3,4,5,6,\dots>$

 

we know that, $\dfrac{1}{(1-x)} = 1+x^{1} + x^{2}+ x^{3}+\dots$

apply derivative both sides,

$\dfrac{1}{(1-x)^{2}} = 1+2.x^{1} + 3.x^{2}+ 4.x^{3}+\dots$

$\therefore \;\;generating \;\;seq. < 1,2,3,4,5,6,\dots>$

 

multiply both sides with x, then

$\dfrac{x}{(1-x)^{2}} = 0+1.x^{1} + 2.x^{2}+ 3.x^{3}+\dots$

$\therefore \;\;generating \;\;seq. < 0,1,2,3,4,5,6,\dots>$


How $\sum_{n=1}^{inf}\;n^{2}.x^{n} \text{  is equal to the generating function }\;\dfrac{x(1+x)}{(1-x)^{3}} ?$

$\sum_{n=1}^{\infty}\;n^{2}.x^{n} =  1.x^{1} + 4.x^{2}+ 9.x^{3}+\dots = 0 + 1.x^{1} + 4.x^{2}+ 9.x^{3}+\dots$

$\therefore \;\;generating \;\;seq. < 0,1,4,9,16,\dots>$

we know that, $\dfrac{1}{(1-x)} = 1+x^{1} + x^{2}+ x^{3}+\dots$

apply derivative both sides,

$\dfrac{1}{(1-x)^{2}} = 1+2.x^{1} + 3.x^{2}+ 4.x^{3}+\dots$

$\therefore \;\;generating \;\;seq. < 1,2,3,4,5,6,\dots>$

Multiply both sides with $x,$ then

$\dfrac{x}{(1-x)^{2}} = 0+1.x^{1} + 2.x^{2}+ 3.x^{3}+\dots$

$\therefore \;\;generating \;\;seq. < 0,1,2,3,4,5,6,\dots>$

Apply derivative both sides,

$LHS = \dfrac{d}{dx}\left(\dfrac{x}{(1-x)^{2}}\right) = \dfrac{1+x}{(1-x)^{3}}$

$RHS =  1+4.x^{1} + 9.x^{2}+ 16.x^{3}+\dots$

$\therefore \;\;generating \;\;seq. < 1,4,9,16,\dots>$

Multiply both sides with $x,$ then

$\dfrac{x(1+x)}{(1-x)^{3}} = 0+1.x^{1} + 4.x^{2}+ 9.x^{3}+\dots$

$\therefore \;\;generating \;\;seq. < 0,1,4,9,16,\dots>$

a Good Pdf to read : ( credits : @Lakshman Patel RJIT )

https://gateoverflow.in/?qa=blob&qa_blobid=9100126224883486314

edited by
Answer:

Related questions

57 votes
57 votes
17 answers
1
Sandeep Singh asked Feb 12, 2016
25,867 views
The coefficient of $x^{12}$ in $\left(x^{3}+x^{4}+x^{5}+x^{6}+\dots \right)^{3}$ is ___________.
45 votes
45 votes
4 answers
2
85 votes
85 votes
18 answers
4
Sandeep Singh asked Feb 12, 2016
35,414 views
Let $G$ be a complete undirected graph on $4$ vertices, having $6$ edges with weights being $1, 2, 3, 4, 5,$ and $6$. The maximum possible weight that a minimum weight s...