GATE CSE
First time here? Checkout the FAQ!
x
+7 votes
566 views

If $P, Q, R$ are subsets of the universal set U, then $$(P\cap Q\cap R) \cup (P^c \cap Q \cap R) \cup Q^c \cup R^c$$ is

  1. $Q^c \cup R^c$
  2. $P \cup Q^c \cup R^c$
  3. $P^c \cup Q^c \cup R^c$
  4. U
asked in Set Theory & Algebra by Veteran (64.7k points)  
edited by | 566 views

4 Answers

+18 votes
Best answer
Answer D

$(P∩Q∩R)\cup (P^c∩Q∩R)\cup Q^c\cup R^c

\\=(P∪P^c)∩(Q∩R)∪Q^c∪R^c

\\=(Q∩R)∪Q^c∪R^c

\\=(Q∩R)∪(Q∩R)^C

\\= U$
answered by Veteran (10.6k points)  
selected by
+9 votes

Can we treat these like Boolean expression and solve?

Like PQR + P'QR + Q' + R'. and minimise this.

Is this method always correct?
@Praveen Sir?
@Arjun Sir?

answered by Loyal (2.9k points)  
Yes absolutely correct , will get 1 , that is U

 Praveen Saini  if use  Aspi R Osa 's method and found P.PQ then this equivalent to PQ or we take it as P.PQ ?

Yes it will be PQ

 Praveen Saini sir 

http://gateoverflow.in/3562/gate2006-it-23 

i above link's Ques 

in I,
LHS=P+QR-PQR
RHS=(P+Q-PQ).(P+R-PR)
=P+PR-PR+PQ+QR-PQR-PQ-PQR+PQR
=P+QR-PQR
LHS=RHS
So I is true but original ans is I is false 

plz verify

$A-B = A \cap B'$
$P\Delta (Q\cap R)$= P-(Q.R) = P.(QR)' = PQ'+PR' that is $(P\Delta Q) \cup (P\Delta R)$

 Praveen Saini  sir 

whats wrong in my explanation 

plz verify 

+7 votes

so option d 

answered by Active (1.5k points)  
+1 vote

hope it might help....

answered by Veteran (14.6k points)  


Top Users Sep 2017
  1. Habibkhan

    7828 Points

  2. Warrior

    2746 Points

  3. rishu_darkshadow

    2692 Points

  4. Arjun

    2672 Points

  5. A_i_$_h

    2426 Points

  6. nikunj

    1980 Points

  7. manu00x

    1920 Points

  8. Bikram

    1854 Points

  9. makhdoom ghaya

    1770 Points

  10. SiddharthMahapatra

    1718 Points


26,239 questions
33,805 answers
80,214 comments
31,159 users