If $P, Q, R$ are subsets of the universal set U, then $$(P\cap Q\cap R) \cup (P^c \cap Q \cap R) \cup Q^c \cup R^c$$ is
Can we treat these like Boolean expression and solve? Like PQR + P'QR + Q' + R'. and minimise this. Is this method always correct? @Praveen Sir? @Arjun Sir?
Praveen Saini if use Aspi R Osa 's method and found P.PQ then this equivalent to PQ or we take it as P.PQ ?
Praveen Saini sir
http://gateoverflow.in/3562/gate2006-it-23
i above link's Ques
in I, LHS=P+QR-PQR RHS=(P+Q-PQ).(P+R-PR) =P+PR-PR+PQ+QR-PQR-PQ-PQR+PQR =P+QR-PQR LHS=RHS So I is true but original ans is I is false
plz verify
whats wrong in my explanation
so option d
hope it might help....
5388 Points
4730 Points
3582 Points
3534 Points
3196 Points
2710 Points
2432 Points
2244 Points
2126 Points
1914 Points
Gatecse
thanks for these Motivating words ...
You can also upload COURSE AND ...