First time here? Checkout the FAQ!
+6 votes

If $P, Q, R$ are subsets of the universal set U, then $$(P\cap Q\cap R) \cup (P^c \cap Q \cap R) \cup Q^c \cup R^c$$ is

  1. $Q^c \cup R^c$
  2. $P \cup Q^c \cup R^c$
  3. $P^c \cup Q^c \cup R^c$
  4. U
asked in Set Theory & Algebra by Veteran (61.8k points)  
edited by | 492 views

4 Answers

+17 votes
Best answer
Answer D

$(P∩Q∩R)\cup (P^c∩Q∩R)\cup Q^c\cup R^c




\\= U$
answered by Veteran (10.4k points)  
selected by
+8 votes

Can we treat these like Boolean expression and solve?

Like PQR + P'QR + Q' + R'. and minimise this.

Is this method always correct?
@Praveen Sir?
@Arjun Sir?

answered by Loyal (2.9k points)  
Yes absolutely correct , will get 1 , that is U

 Praveen Saini  if use  Aspi R Osa 's method and found P.PQ then this equivalent to PQ or we take it as P.PQ ?

Yes it will be PQ

 Praveen Saini sir 

i above link's Ques 

in I,
So I is true but original ans is I is false 

plz verify

$A-B = A \cap B'$
$P\Delta (Q\cap R)$= P-(Q.R) = P.(QR)' = PQ'+PR' that is $(P\Delta Q) \cup (P\Delta R)$

 Praveen Saini  sir 

whats wrong in my explanation 

plz verify 

+6 votes

so option d 

answered by Active (1.4k points)  
0 votes

hope it might help....

answered by Veteran (13.4k points)  

Top Users Aug 2017
  1. Bikram

    5388 Points


    4730 Points

  3. manu00x

    3582 Points

  4. akash.dinkar12

    3534 Points

  5. rahul sharma 5

    3196 Points

  6. makhdoom ghaya

    2710 Points

  7. just_bhavana

    2432 Points

  8. stblue

    2244 Points

  9. Tesla!

    2126 Points

  10. pawan kumarln

    1914 Points

25,076 questions
32,240 answers
30,249 users