edited by
810 views

2 Answers

21 votes
21 votes
First of all, we know that $k ! \equiv 0(\bmod 9)$ for all $k \geq 6$. Thus, we only need to find $(1 !+2 !+3 !+4 !+5 !)(\bmod 9)$
$$
\begin{gathered}
1 ! \equiv 1(\bmod 9) \\
2 ! \equiv 2(\bmod 9) \\
3 ! \equiv 6(\bmod 9) \\
4 ! \equiv 24 \equiv 6(\bmod 9) \\
5 ! \equiv 5 \cdot 6 \equiv 30 \equiv 3(\bmod 9)
\end{gathered}
$$
Thus,
$$
(1 !+2 !+3 !+4 !+5 !) \equiv 1+2+6+6+3 \equiv 18 \equiv 0(\bmod 9)
$$
So, the remainder is $0.$
edited by
Answer:

Related questions

6 votes
6 votes
4 answers
4
GO Classes asked Mar 14, 2023
902 views
Let us consider the following three vectors $v_1, v_2,$ and $v_3$ in $\mathbb{R}^3$.$$\begin{aligned}& v_1=\left(\begin{array}{lll}1 & 0 & -2\end{array}\right) \\& v_2=\l...