GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
113 views

s

asked in Calculus by (51 points)   | 113 views

1 Answer

+1 vote
Best answer

​We have to integrate the Surface Sxy = 2x + 5y - 3  , over the circumference of circle

      (x+1)2 + (y-1)2  = (√2)2    ------------- (1)

{Thanks to Praveen Sir for pointing this out smiley ​,Equation given in question is wrong..}          

Centre of circle is (-1, 1) & radius is √2 .  => This means x goes from (-1 - √2) to (-1 + √2) .


Now, $\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ + \ 5y\ - \ 3)\ dx$​
 
At circle circumference , y = $\pm$ √(1 - x2 -2x) + 1    {from (1)}
So, we have two possible values of y here , as x goes from (-1 - √2) to (-1 + √2)
 
 putting the value of y in terms of x, we get -
$\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ + \ 5\sqrt(1 -x^{2} - 2x) \ +5 - \ 3)\ dx$ 
 
   +  $\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ - \ 5\sqrt(1 -x^{2} - 2x) \ +5 - \ 3)\ dx$
= A + B  {saying first integral as A and 2nd as B}

​I am showing how to solve A ,

   A = $\left [ x^{2} + (-\frac{5}{2})(\frac{(1 - x^{2} - 2x)^{\frac{3}{2}}}{x + 1}) \ +\ 2x \right ]_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)}$

=> A = 0    {Similarly B comes 0}
 


=> A + B = 0

= 0 (Ans)
answered by Veteran (15.7k points)  
selected by
Top Users Feb 2017
  1. Arjun

    5386 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2240 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,022 answers
59,696 comments
22,133 users