GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
103 views

s

asked in Calculus by (51 points)   | 103 views

1 Answer

+1 vote
Best answer

​We have to integrate the Surface Sxy = 2x + 5y - 3  , over the circumference of circle

      (x+1)2 + (y-1)2  = (√2)2    ------------- (1)

{Thanks to Praveen Sir for pointing this out smiley ​,Equation given in question is wrong..}          

Centre of circle is (-1, 1) & radius is √2 .  => This means x goes from (-1 - √2) to (-1 + √2) .


Now, $\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ + \ 5y\ - \ 3)\ dx$​
 
At circle circumference , y = $\pm$ √(1 - x2 -2x) + 1    {from (1)}
So, we have two possible values of y here , as x goes from (-1 - √2) to (-1 + √2)
 
 putting the value of y in terms of x, we get -
$\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ + \ 5\sqrt(1 -x^{2} - 2x) \ +5 - \ 3)\ dx$ 
 
   +  $\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ - \ 5\sqrt(1 -x^{2} - 2x) \ +5 - \ 3)\ dx$
= A + B  {saying first integral as A and 2nd as B}

​I am showing how to solve A ,

   A = $\left [ x^{2} + (-\frac{5}{2})(\frac{(1 - x^{2} - 2x)^{\frac{3}{2}}}{x + 1}) \ +\ 2x \right ]_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)}$

=> A = 0    {Similarly B comes 0}
 


=> A + B = 0

= 0 (Ans)
answered by Veteran (15.5k points)  
selected by

Related questions

Top Users Jan 2017
  1. Debashish Deka

    7172 Points

  2. Habibkhan

    4696 Points

  3. Vijay Thakur

    4308 Points

  4. sudsho

    4090 Points

  5. saurabh rai

    4024 Points

  6. Arjun

    3292 Points

  7. santhoshdevulapally

    3066 Points

  8. GateSet

    3016 Points

  9. Bikram

    3014 Points

  10. Sushant Gokhale

    2892 Points

Monthly Topper: Rs. 500 gift card

18,838 questions
23,808 answers
51,589 comments
20,148 users