GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
119 views

s

asked in Calculus by (51 points)   | 119 views

1 Answer

+1 vote
Best answer

​We have to integrate the Surface Sxy = 2x + 5y - 3  , over the circumference of circle

      (x+1)2 + (y-1)2  = (√2)2    ------------- (1)

{Thanks to Praveen Sir for pointing this out smiley ​,Equation given in question is wrong..}          

Centre of circle is (-1, 1) & radius is √2 .  => This means x goes from (-1 - √2) to (-1 + √2) .


Now, $\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ + \ 5y\ - \ 3)\ dx$​
 
At circle circumference , y = $\pm$ √(1 - x2 -2x) + 1    {from (1)}
So, we have two possible values of y here , as x goes from (-1 - √2) to (-1 + √2)
 
 putting the value of y in terms of x, we get -
$\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ + \ 5\sqrt(1 -x^{2} - 2x) \ +5 - \ 3)\ dx$ 
 
   +  $\int_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)} ( 2x \ - \ 5\sqrt(1 -x^{2} - 2x) \ +5 - \ 3)\ dx$
= A + B  {saying first integral as A and 2nd as B}

​I am showing how to solve A ,

   A = $\left [ x^{2} + (-\frac{5}{2})(\frac{(1 - x^{2} - 2x)^{\frac{3}{2}}}{x + 1}) \ +\ 2x \right ]_{(-1 \ - \ \sqrt2)}^{(-1\ +\ \sqrt2)}$

=> A = 0    {Similarly B comes 0}
 


=> A + B = 0

= 0 (Ans)
answered by Veteran (15.9k points)  
selected by


Top Users May 2017
  1. akash.dinkar12

    3338 Points

  2. pawan kumarln

    2108 Points

  3. Bikram

    1922 Points

  4. sh!va

    1682 Points

  5. Arjun

    1614 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1208 Points

  8. Angkit

    1056 Points

  9. LeenSharma

    1018 Points

  10. Arnab Bhadra

    812 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    1008 Points

  2. pawan kumarln

    734 Points

  3. Arnab Bhadra

    726 Points

  4. Arjun

    342 Points

  5. bharti

    328 Points


22,893 questions
29,196 answers
65,302 comments
27,695 users