GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
163 views

The function y=|2 - 3x|​

a) is continuous  x  R and differentiable  x  R

b) is continuous  x  R and differentiable  x  R except at x= 3/2

c) is continuous  x  R and differentiable  x  R except at x= 2/3

d) is continuous  x  R except x=3 and differentiable  x  R

asked in Calculus by (41 points)  
edited by | 163 views

3 Answers

+4 votes
Best answer

y = 2 - 3x        2 - 3x $\geq$ 0
      3x - 2         2 - 3x $<$ 0

y = 2 - 3x        x $\leq \frac{2}{3}$
     3x - 2         x $> \frac{2}{3}$

as y is polynomial it is continuous and differentiable at all points but don't know at x = $\frac{2}{3}$

continuity at x = $\frac{2}{3}$
left limit = $2-3 \times \frac{2}{3} = 0$
right limit = $ 3 \times \frac{2}{3} - 2 = 0$
f(a) = f(2/3) = $2-3 \times \frac{2}{3} = 0$

$\therefore$ LL = RL = f(a) so y is continuous $\forall x \epsilon R$

Differentiability at x = $\frac{2}{3}$
left derivative = 0 - 3 = -3
right derivative = 3 - 0 = 3

$\therefore$ LD $\neq$ RD, so y is not differentiable at  $ x = \frac{2}{3}$

So Answer is option c

answered by Boss (8.6k points)  
selected by
+2 votes

We can say from the above graph of function y= |2-3x| that it is continuous for all real x but not differentiable at x=2/3 as its graph is making sharp corner at this point. 

At x= 2/3

LHD= -3 and RHD= 3 which are not equal so not differentiable at x=2/3.

 

answered by Veteran (23.7k points)  
0 votes

The function |2-3x| is continuos ∀x∊R except at x=2/3 as if x>2/3 (i.e in RHL case) then function will become f(x)= 2-3x

if x<2/3(i.e in LHL case) then function will become f(x)=3x-2.  Now, if you put any value of x∈R in these equation you will always get some value i.e function is continuos for LHL and RHL both. 

For differentiability, for LHL(Left Hand Limit) i.e. if x<2/3 then value of function at which min/max occur will be 3

and for RHL(Right Hand Limit) for x>2/3 the value of function at which min/max occur will be -3.

Since both are different value hence, function cannot be differentiable at x=2/3

Hence, option C is the answer.

answered by Junior (893 points)  
edited by
You say if we put any value such that x belongs to R, LHL and RHL will be the same. Lets say x=4

Then 2-3x = 2-3*4 = -10

and 3x-2 = 3*4-2 = 10

which are NOT the same.

I am not saying that at any value of x∊R, LHL and RHL will be same. I am saying that at any value of x function will be continuous i.e it will have some non-zero value except at x=2/3.

Top Users Jan 2017
  1. Debashish Deka

    8322 Points

  2. sudsho

    5166 Points

  3. Habibkhan

    4718 Points

  4. Vijay Thakur

    4468 Points

  5. Bikram

    4420 Points

  6. saurabh rai

    4212 Points

  7. Arjun

    4072 Points

  8. santhoshdevulapally

    3732 Points

  9. Sushant Gokhale

    3514 Points

  10. GateSet

    3336 Points

Monthly Topper: Rs. 500 gift card

19,157 questions
24,065 answers
52,872 comments
20,288 users