GATE CSE
First time here? Checkout the FAQ!
x
0 votes
270 views

Question:

The value of $\zeta$ of  $f(b) - f(a) = (b-a) \cdot f'(\zeta)$ for the function $f(x) = Ax^2 + Bx +C$ in the interval $[a,b]$ is _______

 

My Attempt :

STEP 1: $f(x)$ is polynomial function therefore continuous

STEP 2: $f(x)$ is polynomial function therefore differentiable 

STEP 3: There exists a  $c$ such that  $a \leq c \leq b$, such that

$$\begin{align}
f'(c) &= \frac{f(b) - f(a)} {b - a} \\[1em]
f'(c) &= 2Ax + B \\[1em]
\hline
f(b) - f(a) &= (b - a) \cdot f'(\zeta) \\[1em]
2Ax+B &= \frac{(b - a) \cdot f'(\zeta)} {b - a}
\end{align}$$

How to proceed further?

asked in Calculus by Veteran (20.3k points)  
edited by | 270 views

1 Answer

+3 votes
Best answer

Given  f(x) = Ax+ Bx +C, Domain  = [a,b]

This function is  polynomial function,so it is continuous & differentiable in its domain [a,b].

Hence LMVT(Lagrange's Mean Value Theorem) is applicable here.

Let there exists a  'ζ'  such that a < ζ < b, So from LMVT ,we have,

f(b) - f(a) /(b-a)  = f'(ζ)  => [(Ab+Bb +C) - (Aa+Ba +C) ]/(b-a)  = 2Aζ + B

=> [A(b2 - a2) + B(b-a)]/(b-a)  = 2Aζ + B

Since b & a are not equal so cancelling (b-a) from Numerator & denominator,we get,

=>A(b+a) + B  = 2Aζ + B  => ζ = (b+a)/2

Hence,  ζ = (b+a)/2

 

answered by Loyal (3.4k points)  
selected by

Related questions

+3 votes
1 answer
1
asked in Calculus by pC Veteran (20.3k points)   | 148 views
+1 vote
1 answer
2


Top Users May 2017
  1. akash.dinkar12

    3152 Points

  2. pawan kumarln

    1630 Points

  3. sh!va

    1590 Points

  4. Arjun

    1350 Points

  5. Devshree Dubey

    1246 Points

  6. Angkit

    1044 Points

  7. Debashish Deka

    1022 Points

  8. Bikram

    972 Points

  9. LeenSharma

    820 Points

  10. Prashant.

    692 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. pawan kumarln

    256 Points

  2. Ahwan

    232 Points

  3. jjayantamahata

    114 Points

  4. joshi_nitish

    114 Points

  5. Arnab Bhadra

    94 Points


22,731 questions
29,061 answers
65,094 comments
27,625 users