GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
137 views

If f ' (x) =$\frac{8}{x^{}2+3x+4}$ and f(0) =1 then the lower and upper bounds of f(1) estimated by Langrange 's Mean Value Theorem are ___

asked in Calculus by Veteran (20.2k points)   | 137 views

1 Answer

+1 vote

$8/(x^{2}+3x+4) =f(1) - f(0)/ (1-0)$

=> $8/(x^{2}+3x+4) =f(1) - 1$
=> $(x^{2}+3x+12)/(x^{2}+3x+4) =f(1)$

Graph of F(1) from the obtained equation

1<F(1)<= 39/7
Thus, F(1)⋳(1,39/7)

answered by Junior (919 points)  
how can it be 1 for lowe bound..??

how did u find upper bound?if it dun want to make a graph,then how to find?by maxima minima i am getting 39/7


Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2734 Points

  5. Debashish Deka

    2592 Points

  6. 2018

    1544 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1342 Points

  9. Bikram

    1312 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,508 questions
26,832 answers
61,091 comments
23,146 users