If f ' (x) =$\frac{8}{x^{}2+3x+4}$ and f(0) =1 then the lower and upper bounds of f(1) estimated by Langrange 's Mean Value Theorem are ___
$8/(x^{2}+3x+4) =f(1) - f(0)/ (1-0)$
=> $8/(x^{2}+3x+4) =f(1) - 1$ => $(x^{2}+3x+12)/(x^{2}+3x+4) =f(1)$ Graph of F(1) from the obtained equation
1<F(1)<= 39/7 Thus, F(1)⋳(1,39/7)
3660 Points
2580 Points
2040 Points
1966 Points
1768 Points
1614 Points
1610 Points
1492 Points
1464 Points
Gatecse
Step 0: Study the topic/subject. Use Bikram ...