If f ' (x) =$\frac{8}{x^{}2+3x+4}$ and f(0) =1 then the lower and upper bounds of f(1) estimated by Langrange 's Mean Value Theorem are ___
$8/(x^{2}+3x+4) =f(1) - f(0)/ (1-0)$
=> $8/(x^{2}+3x+4) =f(1) - 1$ => $(x^{2}+3x+12)/(x^{2}+3x+4) =f(1)$ Graph of F(1) from the obtained equation
1<F(1)<= 39/7 Thus, F(1)⋳(1,39/7)
4768 Points
3054 Points
2920 Points
2734 Points
2592 Points
1544 Points
1422 Points
1342 Points
1312 Points
1126 Points
Gatecse
44.71 marks ...