GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
213 views

If f ' (x) =$\frac{8}{x^{}2+3x+4}$ and f(0) =1 then the lower and upper bounds of f(1) estimated by Langrange 's Mean Value Theorem are ___

asked in Calculus by Veteran (21.3k points)   | 213 views

1 Answer

+1 vote

$8/(x^{2}+3x+4) =f(1) - f(0)/ (1-0)$

=> $8/(x^{2}+3x+4) =f(1) - 1$
=> $(x^{2}+3x+12)/(x^{2}+3x+4) =f(1)$

Graph of F(1) from the obtained equation

1<F(1)<= 39/7
Thus, F(1)⋳(1,39/7)

answered by anonymous   1 1 2
how can it be 1 for lowe bound..??

how did u find upper bound?if it dun want to make a graph,then how to find?by maxima minima i am getting 39/7


Top Users Sep 2017
  1. Habibkhan

    6334 Points

  2. Warrior

    2202 Points

  3. Arjun

    2150 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. SiddharthMahapatra

    1718 Points

  7. Bikram

    1706 Points

  8. makhdoom ghaya

    1650 Points

  9. A_i_$_h

    1518 Points

  10. rishu_darkshadow

    1512 Points


25,978 questions
33,554 answers
79,344 comments
31,011 users