GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
148 views

If f ' (x) =$\frac{8}{x^{}2+3x+4}$ and f(0) =1 then the lower and upper bounds of f(1) estimated by Langrange 's Mean Value Theorem are ___

asked in Calculus by Veteran (20.3k points)   | 148 views

1 Answer

+1 vote

$8/(x^{2}+3x+4) =f(1) - f(0)/ (1-0)$

=> $8/(x^{2}+3x+4) =f(1) - 1$
=> $(x^{2}+3x+12)/(x^{2}+3x+4) =f(1)$

Graph of F(1) from the obtained equation

1<F(1)<= 39/7
Thus, F(1)⋳(1,39/7)

answered by anonymous   1 1 2
how can it be 1 for lowe bound..??

how did u find upper bound?if it dun want to make a graph,then how to find?by maxima minima i am getting 39/7


Top Users May 2017
  1. akash.dinkar12

    3308 Points

  2. pawan kumarln

    1884 Points

  3. Bikram

    1656 Points

  4. sh!va

    1640 Points

  5. Arjun

    1396 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1162 Points

  8. Angkit

    1048 Points

  9. LeenSharma

    1010 Points

  10. Arunav Khare

    754 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    742 Points

  2. pawan kumarln

    510 Points

  3. Arnab Bhadra

    490 Points

  4. bharti

    304 Points

  5. LeenSharma

    248 Points


22,832 questions
29,158 answers
65,233 comments
27,673 users