If f ' (x) =$\frac{8}{x^{}2+3x+4}$ and f(0) =1 then the lower and upper bounds of f(1) estimated by Langrange 's Mean Value Theorem are ___
$8/(x^{2}+3x+4) =f(1) - f(0)/ (1-0)$
=> $8/(x^{2}+3x+4) =f(1) - 1$ => $(x^{2}+3x+12)/(x^{2}+3x+4) =f(1)$ Graph of F(1) from the obtained equation
1<F(1)<= 39/7 Thus, F(1)⋳(1,39/7)
8322 Points
5166 Points
4718 Points
4468 Points
4420 Points
4212 Points
4072 Points
3732 Points
3514 Points
3336 Points
Gatecse