First time here? Checkout the FAQ!
+1 vote
This question was asked in IITB (RA) admissions 2016.

I have two blue dice, with which I play a game. If I throw a double six (i.e. if I get two six on both the dices) then I win the game. I  separately throw a red dice. If I get a one, then I tell truth about whether I win/loose in the previous game, otherwise I lie. I just rolled the three die. I turn around to you and said, "I won!". What is the probability that I actually won the game?
asked in Probability by Active (2.3k points)   | 129 views

1 Answer

+2 votes
Best answer

On blue dice throw chances of winning 1/36

chances of lost 35/36

Next chances of getting 1 in red dice is 1/6 i.e. he is telling truth

other 5/6 times he lies

Now there are 4 possibilities

  • he wins (probability 1/36) and telling truth that he wins (probability 1/6).........i
  • he wins (probability 1/36) and telling false that he lost (probability 5/6)
  • he lost (probability 35/36) and telling truth that he lost  (probability 5/6)
  • he lost (probability 35/36) and telling false that he wins (probability 1/6)...........ii

Now we calculated on he tells he wins i.e. i and ii cases

Now he wins and red dice throws , he tells truth that he wins  1/6 ⨉1/36

"     he lost and red dice thrown , he tells lie that he wins 5/6 ⨉ 35/36

Probability of actually winning chance is

= (1/(36⨉6)) / ((1/(6⨉36))+((5⨉35) / (6⨉36))) =1/176

answered by Veteran (52.4k points)  
selected by
isn't question asking probality of actual win not false win ? hence 1/216 is answer?
No , to get actual wining Bayes theorem should be applied
@Srestha I want to know, how you are partitioning the sample space, to apply Bayes Theorem?
@utk now clear?


$P(\frac{A}{E1})=\frac{P(A\cap E1)}{P(E1)}=\frac{(\frac{1}{6})(\frac{1}{36})}{(\frac{1}{36})}=\frac{1}{6}$

Similarly, $P(\frac{A}{E2})=\frac{1}{6}$

Then, we have, $P(\frac{E1}{A})=\frac{P(\frac{A}{E1})P(E1)}{P(\frac{A}{E1})P(E1)+P(\frac{A}{E2})P(E2)}=\frac{1}{36}$


I am getting this solution. What's wrong? @Srestha

I think u give more priority to blue dice rather than wining probability
Probability for actual win is asked not false win so how is answer 1/176

Top Users Mar 2017
  1. rude

    4272 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2244 Points

  6. 2018

    1414 Points

  7. Vignesh Sekar

    1338 Points

  8. Akriti sood

    1246 Points

  9. Bikram

    1246 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,452 questions
26,771 answers
22,985 users