GATE CSE
First time here? Checkout the FAQ!
x
0 votes
19 views

Let $G$ be a connected graph. For a vertex $x$ of $G$ we denote by $G−x$ the graph formed by removing $x$ and all edges incident on $x$ from $G$. $G$ is said to be good if there are at least two distinct vertices $x, y$ in $G$ such that both $G − x$ and $G − y$ are connected.

  1. Show that for any subgraph $H$ of $G$, $H$ is good if and only if $G$ is good.
asked in Set Theory & Algebra by Veteran (73.3k points)   | 19 views

Please log in or register to answer this question.

Related questions

Top Users Jan 2017
  1. Debashish Deka

    8322 Points

  2. sudsho

    5166 Points

  3. Habibkhan

    4718 Points

  4. Vijay Thakur

    4468 Points

  5. Bikram

    4420 Points

  6. saurabh rai

    4212 Points

  7. Arjun

    4072 Points

  8. santhoshdevulapally

    3732 Points

  9. Sushant Gokhale

    3518 Points

  10. GateSet

    3336 Points

Monthly Topper: Rs. 500 gift card

19,158 questions
24,065 answers
52,873 comments
20,288 users