GATE CSE
First time here? Checkout the FAQ!
x
0 votes
64 views
A certain string-processing language offers a primitive operation which splits a string into two pieces. Since this operation involves copying the original string, it takes n units of time for a string of length $n$, regardless of the location of the cut.
Suppose, now, that you want to break a string into many pieces. The order in which the breaks are made can affect the total running time. For example, if you want to cut a 20-character string at positions 3 and 10, then making the first cut at position 3 incurs a total cost of 20 + 17 = 37, while doing position 10 first has a better cost of 20 + 10 = 30.
Give a dynamic programming algorithm that, given the locations of m cuts in a string of length n, finds the minimum cost of breaking the string into m + 1 pieces. You may assume that all m locations are in the interior of the string so each split is non-trivial.
asked in Algorithms by Veteran (76k points)   | 64 views

Please log in or register to answer this question.



Top Users Mar 2017
  1. rude

    4272 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2244 Points

  6. 2018

    1414 Points

  7. Vignesh Sekar

    1338 Points

  8. Akriti sood

    1246 Points

  9. Bikram

    1246 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,452 questions
26,771 answers
60,972 comments
22,985 users