GATE CSE
First time here? Checkout the FAQ!
x
0 votes
87 views

Consider the code below, defining the function $mystery:$

mystery(a,b){
    if (a < 0 or b < 0) return 0;
    else if (a == 0) return b+1;
    else if (b == 0) return mystery(a-1,1);
    else return mystery(a-1, mystery(a,b-1));
}
  1. Express $mystery(1, \:n)$ as a function of $n$.
  2. Express $mystery(2,\: n)$ as a function of $n$.
  3. Compute $mystery(3, \:2)$ and $mystery(3, 3)$.
asked in Algorithms by Veteran (78.3k points)   | 87 views

2 Answers

+1 vote
i) mystry(1,n)=n+2

ii)mystry(2,0)=3

mystry(2,1)=5

mystry(2,2)=7

.................

mystry(2,n)=2n+3

 

iii) mystry(1,1)=mystry(0,2)=3

as, mystry(1,0)=3

mystry(0,1)=2

 

mystery(1,2)=mystery(0,mystery(1,1))=mystery(0,3)=4

mystery(2,1)=mystery(1,mystery(2,0))=mystery(1,3)=5

 

mystery(1,3)=5

 

mystery(3,0)=mystery(2,1)=5

 

mystery(3,1)=mystery(2,mystery(3,0))=mystery(2,5)=13

As, mystery(2,5)=mystery(1,mystery(2,4))=13

mystery(2,4)=mystery(1,mystery(2,3))=11

mystery(2,3)=mystery(1,mystery(2,2))=9

mystery(2,2)=mystery(1,mystery(2,1))=7

 

mystery(3,2)=mystery(2,mystery(3,1))=mystery(2,13)=29 [By putting above formula 2n+3 we also can get it]
answered by Veteran (55.6k points)  
0 votes

i. mystery(1,n) = n+2

ii. mystery(2,n)=2n + 3

iii. mystery(3,2)= 29 and mystery(3,3)= 61

 

 

answered by Veteran (25k points)  

Related questions



Top Users Jul 2017
  1. Bikram

    4910 Points

  2. manu00x

    2940 Points

  3. Debashish Deka

    1870 Points

  4. joshi_nitish

    1776 Points

  5. Arjun

    1506 Points

  6. Hemant Parihar

    1306 Points

  7. Shubhanshu

    1128 Points

  8. pawan kumarln

    1124 Points

  9. Arnab Bhadra

    1114 Points

  10. Ahwan

    956 Points


24,099 questions
31,074 answers
70,703 comments
29,407 users