A college prepares its timetable by grouping courses in slots A, B, C, . . . All courses in a slot meet at the same time, and courses in different slots have disjoint timings. Course registration has been completed and the administration now knows which students are registered for each course. If the same student is registered for two courses, the courses must be assigned different slots. The administration is trying to compute the minimum number of slots required to prepare the timetable.
The administration decides to model this as a graph where the nodes are the courses and edges represent pairs of courses with an overlapping audience. In this setting, the graph theoretic question to be answered is:
- Find a spanning tree with minimum number of edges.