GATE CSE
First time here? Checkout the FAQ!
x
0 votes
74 views

A fan of order $n$ is a graph on the vertices $\{0, 1, \dots, n\}$ with 2n − 1 edges defined as follows: vertex 0 is connected by an edge to each of the other $n$ vertices, and vertex $i$ is connected by an edge to vertex $i + 1$, for $1 \leq i \leq n − 1$.

Let $f_n$ denote the number of spanning trees of the fan of order $n$.

  1. Calculate $f_4$.
  2. Write a recurrence for $f_n$.
  3. Solve for fn using ordinary generating fuctions.
asked in Graph Theory by Veteran (76.3k points)   | 74 views

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.


Top Users Apr 2017
  1. akash.dinkar12

    3752 Points

  2. Divya Bharti

    2618 Points

  3. Deepthi_ts

    2162 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Sanjay Sharma

    1646 Points

  7. Debashish Deka

    1614 Points

  8. Shubham Sharma 2

    1610 Points

  9. Prashant.

    1554 Points

  10. Kapil

    1528 Points

Monthly Topper: Rs. 500 gift card

22,100 questions
28,082 answers
63,368 comments
24,203 users