Is there a way to find no of perfect matchings in a complete graph K_{n }where n could be either even or odd..?
if n is odd then perfect matching 0. because in perfect matching degree of each vertex must be 1, which is not possible if n is odd.
and if n is even then num of perfect matching in K_{2n}=( 2n! ) / ( 2^n * n! )
explain how K2n=( 2n! ) / ( 2^n * n! )
8126 Points
5042 Points
4706 Points
4458 Points
4348 Points
4212 Points
4010 Points
3722 Points
3292 Points
3286 Points
Gatecse