GATE CSE
First time here? Checkout the FAQ!
x
0 votes
413 views

If the mean of a normal frequency distribution of 1000 items is 25 and its standard deviation is 2.5, then its maximum ordinate is

  1. $\frac{1000}{\sqrt{2 \pi} } e^{-25}$
  2. $\frac{1000}{\sqrt{2 \pi} }$
  3. $\frac{1000}{\sqrt{2 \pi} } e^{-2.5}$
  4. $\frac{400}{\sqrt{2 \pi} }$
asked in Probability by Veteran (76k points)   | 413 views

1 Answer

0 votes
Mean u=25

Standard deviation s=2.5

Probability density function f(x)=(e^-((x-u)^2)/(2s^2))/(s(2pi)^0.5)

Maximum value of f(x) is  1/s(2pi)^0.5 at x=u

Hence , maximum value is 1000/s(2pi)^0.5=400/(2pi)^0.5

Option D
answered by (361 points)  
edited by
How $\frac{1}{{sigma} * \sqrt[2]{2\prod }}$ comes out to be (D) ?
Maximum ordinate = Number of items x max(probability density function)

Max(f(x)):

d/dx(f(x))=-2(x-u)f(x)

for d/dx(f(x))=0

x=u

At which f(x)=1/s(2pi)^0.5


Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2728 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1572 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1362 Points

  9. Bikram

    1334 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,516 questions
26,842 answers
61,138 comments
23,176 users