GATE CSE
First time here? Checkout the FAQ!
x
0 votes
517 views

If the mean of a normal frequency distribution of 1000 items is 25 and its standard deviation is 2.5, then its maximum ordinate is

  1. $\frac{1000}{\sqrt{2 \pi} } e^{-25}$
  2. $\frac{1000}{\sqrt{2 \pi} }$
  3. $\frac{1000}{\sqrt{2 \pi} } e^{-2.5}$
  4. $\frac{400}{\sqrt{2 \pi} }$
asked in Probability by Veteran (76.6k points)   | 517 views

1 Answer

0 votes
Mean u=25

Standard deviation s=2.5

Probability density function f(x)=(e^-((x-u)^2)/(2s^2))/(s(2pi)^0.5)

Maximum value of f(x) is  1/s(2pi)^0.5 at x=u

Hence , maximum value is 1000/s(2pi)^0.5=400/(2pi)^0.5

Option D
answered by (361 points)  
edited by
How $\frac{1}{{sigma} * \sqrt[2]{2\prod }}$ comes out to be (D) ?
Maximum ordinate = Number of items x max(probability density function)

Max(f(x)):

d/dx(f(x))=-2(x-u)f(x)

for d/dx(f(x))=0

x=u

At which f(x)=1/s(2pi)^0.5


Top Users Apr 2017
  1. akash.dinkar12

    3796 Points

  2. Divya Bharti

    2716 Points

  3. Deepthi_ts

    2292 Points

  4. rude

    2142 Points

  5. Tesla!

    1888 Points

  6. Kapil

    1786 Points

  7. Sanjay Sharma

    1702 Points

  8. Debashish Deka

    1690 Points

  9. Prashant.

    1624 Points

  10. Arjun

    1614 Points

Monthly Topper: Rs. 500 gift card

22,147 questions
28,145 answers
63,531 comments
24,300 users