GATE CSE
First time here? Checkout the FAQ!
x
0 votes
768 views

If the mean of a normal frequency distribution of 1000 items is 25 and its standard deviation is 2.5, then its maximum ordinate is

  1. $\frac{1000}{\sqrt{2 \pi} } e^{-25}$
  2. $\frac{1000}{\sqrt{2 \pi} }$
  3. $\frac{1000}{\sqrt{2 \pi} } e^{-2.5}$
  4. $\frac{400}{\sqrt{2 \pi} }$
asked in Probability by Veteran (79.1k points)   | 768 views

1 Answer

0 votes
Mean u=25

Standard deviation s=2.5

Probability density function f(x)=(e^-((x-u)^2)/(2s^2))/(s(2pi)^0.5)

Maximum value of f(x) is  1/s(2pi)^0.5 at x=u

Hence , maximum value is 1000/s(2pi)^0.5=400/(2pi)^0.5

Option D
answered by (361 points)  
edited by
How $\frac{1}{{sigma} * \sqrt[2]{2\prod }}$ comes out to be (D) ?
Maximum ordinate = Number of items x max(probability density function)

Max(f(x)):

d/dx(f(x))=-2(x-u)f(x)

for d/dx(f(x))=0

x=u

At which f(x)=1/s(2pi)^0.5


Top Users Aug 2017
  1. Bikram

    4892 Points

  2. ABKUNDAN

    4704 Points

  3. akash.dinkar12

    3480 Points

  4. rahul sharma 5

    3158 Points

  5. manu00x

    3012 Points

  6. makhdoom ghaya

    2470 Points

  7. just_bhavana

    2382 Points

  8. stblue

    2130 Points

  9. Tesla!

    2066 Points

  10. joshi_nitish

    1758 Points


25,009 questions
32,132 answers
74,803 comments
30,179 users