GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
454 views
asked in Algorithms by (111 points)   | 454 views
plz give me ans by back substitution.....

Here is an explaination for the solution http://techieme.in/solving-recurrences-master-method/

2 Answers

+1 vote

T(n) = 7T(n/2) + n^2

comparing with the equation (MASTER THEOREM)

T(n) = aT(n/b) + ⊖(n^k $\log_{n}p$)

we get ,a=7,b=2,k=2,p=0

now it satisfies a>b^k,

so case first of master theorem

T(n) = ⊖(n^$\log_{b}a$)

T(n)=⊖(n^3)

answered by Boss (8.4k points)  
T(n) = n^2.801
we know by master theoram

T(n) = aT(n/b) + n^klogp(base n)

where a>=1 , b>1 , k>=0 and p is a real number

In above question a =7, b=2 , k=2 and p=0

if a>b^k

then Tc = O(n^loga(base b))

            = O(n^log7(base 2))

            =O(n^3)
0 votes

Compare with master theorem ,a=7,b=2 and f(n)=n2

T(n)=nlog27 =n2.81 i.e f(n) is polynomially smaller than t(n), therefore it is first case

 therefore, ans is (nlog7) or (n2.81)

answered by Junior (523 points)  

Related questions

+1 vote
2 answers
1
0 votes
1 answer
2
asked in Algorithms by iarnav Active (1.3k points)   | 82 views
+1 vote
1 answer
3


Top Users Jun 2017
  1. Bikram

    3704 Points

  2. Hemant Parihar

    1502 Points

  3. junaid ahmad

    1432 Points

  4. Arnab Bhadra

    1416 Points

  5. Niraj Singh 2

    1391 Points

  6. Debashish Deka

    1246 Points

  7. Rupendra Choudhary

    1194 Points

  8. rahul sharma 5

    1158 Points

  9. Arjun

    956 Points

  10. srestha

    950 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 19 - 25
  1. Bikram

    1960 Points

  2. Niraj Singh 2

    1386 Points

  3. junaid ahmad

    502 Points

  4. Debashish Deka

    414 Points

  5. sudsho

    410 Points


23,373 questions
30,079 answers
67,406 comments
28,396 users