GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
123 views

Identifying a Distributive Lattice

If it is isomorphic to two standard lattice L1* and  L2*  then the lattice is Not Distributive .
If Complemented Then unique complement should exists .

Identifying a complemented Lattice

Atleast one complement exists for every pair of element . (a,b) are complement to each other if meet and loin of (a,b) are Upper Bound and Lower Bound of lattice .

Is My understanding Correct ??

Q1 ]  POSET [{ 1,2,3,6,12}; / ]
         This POSET is a distributive lattice Eventough complement does not exists for 2,3 .
        IF Complement  exists it should be UNIQE. Atmost one complement for every element
       Is my analysis correct ?
Q2]  POSET [{1,2,3}, <= ]

      What is complemet of 1 , 2 and 3 ? Im not able to find out with above understanding
     

asked in Set Theory & Algebra by Loyal (2.6k points)   | 123 views

2 Answers

+3 votes
1. 1 ----> (2, 3) ---> 6 ----> 12, here complement of 12 is 1. For all other elements complement doesn't exist.

2. 1 ---> 2 ---> 3, here complement of 3 is 1 and complement of 2 doesn't exist.
answered by Veteran (45.3k points)  
Thank you sir
basically if a lattice contains L1* or L2*, it is not distributive. Right ??
0 votes

IN Distributive Lattice atmost one complement of each element should be present.

But In complemented lattice at least one complement of each element should be present.

answered by Loyal (4.5k points)  


Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2728 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1574 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1378 Points

  9. Bikram

    1342 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,517 questions
26,844 answers
61,157 comments
23,181 users