GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
116 views

Identifying a Distributive Lattice

If it is isomorphic to two standard lattice L1* and  L2*  then the lattice is Not Distributive .
If Complemented Then unique complement should exists .

Identifying a complemented Lattice

Atleast one complement exists for every pair of element . (a,b) are complement to each other if meet and loin of (a,b) are Upper Bound and Lower Bound of lattice .

Is My understanding Correct ??

Q1 ]  POSET [{ 1,2,3,6,12}; / ]
         This POSET is a distributive lattice Eventough complement does not exists for 2,3 .
        IF Complement  exists it should be UNIQE. Atmost one complement for every element
       Is my analysis correct ?
Q2]  POSET [{1,2,3}, <= ]

      What is complemet of 1 , 2 and 3 ? Im not able to find out with above understanding
     

asked in Set Theory & Algebra by Loyal (2.5k points)   | 116 views

2 Answers

+3 votes
1. 1 ----> (2, 3) ---> 6 ----> 12, here complement of 12 is 1. For all other elements complement doesn't exist.

2. 1 ---> 2 ---> 3, here complement of 3 is 1 and complement of 2 doesn't exist.
answered by Veteran (45.3k points)  
Thank you sir
basically if a lattice contains L1* or L2*, it is not distributive. Right ??
0 votes

IN Distributive Lattice atmost one complement of each element should be present.

But In complemented lattice at least one complement of each element should be present.

answered by Loyal (4.4k points)  
Top Users Feb 2017
  1. Arjun

    5224 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3748 Points

  4. Aboveallplayer

    2986 Points

  5. Debashish Deka

    2356 Points

  6. sriv_shubham

    2298 Points

  7. Smriti012

    2142 Points

  8. Arnabi

    2008 Points

  9. sh!va

    1654 Points

  10. mcjoshi

    1628 Points

Monthly Topper: Rs. 500 gift card

20,832 questions
25,989 answers
59,623 comments
22,046 users