We talk about distributivity and boolean algebra only iff it's a lattice(POSET). So, Relation needs to be provided with Set under discussion.
So, the correct question would go like : let $[D_{36},/]$ (or) Set $D_{36}$ on relation divides. (although its know that we talk about division mostly)
In Dn ,if n is square free number then it will be a boolean algebra along with the numbe of vertex should be 2^n and number of edges should be 2*2^n-2.
Above is most important condition to identify whether a relation is boolean algebra or not.Above rule is not for distributive lattice.
Distributive lattice fallow the distributive properties and sublattice properties.
Example:: D64 not Boolean algebra but D110 is boolean algebra.
5166 Points
4204 Points
3748 Points
2986 Points
2298 Points
2234 Points
2142 Points
1998 Points
1626 Points
1552 Points
Gatecse