First time here? Checkout the FAQ!
+1 vote
In one text I read that , if n is square free it is DISTRIBUTIVE
in other text I read that if n is square free  it is BOOLEAN ALGEBRA .

Which is most correct ?

Here D36 is not square free then... what conclusion can I make ?
asked in Set Theory & Algebra by Veteran (21.3k points)   | 308 views

We talk about distributivity and boolean algebra only iff it's a lattice(POSET). So, Relation needs to be provided with Set under discussion.

So, the correct question would go like : let $[D_{36},/]$ (or) Set $D_{36}$ on relation divides. (although its know that we talk about division mostly)

5 Answers

+1 vote
Best answer
You can simply check whether d36 is distributive  or not by checking whether we can get it by product of distinct primes for example
D30=2.3.5=30 possible  d40= not possible as 2 came 3 times not distinct d36= not distributive as we did not get it through product of distinct primes
answered by Ajay singh  
selected by
+1 vote
Dn if n is a square free number,then  it will be a boolean algebra because if it is perfect square ,then its factors will repeat and then it may lead to more than one complement of an element which is actually not a boolean algebra. D36 is not a boolean algebra.
answered by Veteran (10.5k points)  
How do you account for distributive ?
+1 vote
When we draw the  hasse diagram, 6 doesnt have a complement. Now, for a lattice to be distributive, every element must have unique complement.

Hence, not distributive.
answered by Veteran (15.4k points)  
+1 vote

In Dn ,if n is square free number then it will be a boolean algebra along with the numbe of vertex should be 2^n and number of edges should be 2*2^n-2.

Above is most important condition to identify whether a relation is boolean algebra or not.Above rule is not for distributive lattice.

Distributive lattice fallow the distributive properties and sublattice properties.

Example:: D64 not Boolean algebra but D110 is boolean algebra.

answered by Boss (5.4k points)  
0 votes

D36 is not a boolean algebra and not a distributive lattice .

36 = 3*2*2*3 so 2 and 3 is repeating hence it is not distributive .

We did not get 36 as product of distinct primes , hence it is not distributive .

answered by Veteran (44.7k points)  

Top Users Sep 2017
  1. Habibkhan

    6334 Points

  2. Warrior

    2202 Points

  3. Arjun

    2150 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. SiddharthMahapatra

    1718 Points

  7. Bikram

    1706 Points

  8. makhdoom ghaya

    1650 Points

  9. A_i_$_h

    1518 Points

  10. rishu_darkshadow

    1512 Points

25,979 questions
33,554 answers
31,011 users