GATE CSE
First time here? Checkout the FAQ!
x
0 votes
74 views

Example of one Question for preparing exam: Fourier series of function:

be like as: $ f(x)=\frac{a_0}{2}+\Sigma_{n=1}^{\infty} (a_n \cos nx+b_n \sin nx) $

 

(Question ) so the coefficient is: $a_n=0,n=2k+1,b_n=0,n=2k$

I want to find that how the coefficient is solved, this is my approach:

$a_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1cos(nx)dx + \int\limits_{0}^{\pi}sin(x)cos(nx) dx) = \frac{1}{\pi} \int\limits_{0}^{\pi}sin(x)cos(nx) dx = \frac{1}{\pi} \frac{cos(n\pi)+1}{1-n^2}$

 

$b_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1sin(nx)dx + \int\limits_{0}^{\pi}sin(x)sin(nx) dx)=\frac{1}{\pi} (\frac{cos(nx)}{n}|_{-\pi}^{0} + \frac{\pi}{2}) = \frac{1}{\pi} (\frac{1-(-1)^n}{n}+\frac{\pi}{2}) $

 

I think my solution is wrong, anyone could help me? I so sad...

asked in Calculus by (113 points)  
edited by | 74 views
Fourier Series is out of GATE syllabus , right ?
please be kind with me, yes

Please log in or register to answer this question.

Top Users Jan 2017
  1. Debashish Deka

    7906 Points

  2. Habibkhan

    4736 Points

  3. Vijay Thakur

    4474 Points

  4. sudsho

    4318 Points

  5. saurabh rai

    4200 Points

  6. Arjun

    3638 Points

  7. Bikram

    3500 Points

  8. santhoshdevulapally

    3480 Points

  9. GateSet

    3228 Points

  10. Sushant Gokhale

    3116 Points

Monthly Topper: Rs. 500 gift card

18,944 questions
23,897 answers
52,122 comments
20,213 users