GATE CSE
First time here? Checkout the FAQ!
x
0 votes
101 views

Example of one Question for preparing exam: Fourier series of function:

be like as: $ f(x)=\frac{a_0}{2}+\Sigma_{n=1}^{\infty} (a_n \cos nx+b_n \sin nx) $

 

(Question ) so the coefficient is: $a_n=0,n=2k+1,b_n=0,n=2k$

I want to find that how the coefficient is solved, this is my approach:

$a_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1cos(nx)dx + \int\limits_{0}^{\pi}sin(x)cos(nx) dx) = \frac{1}{\pi} \int\limits_{0}^{\pi}sin(x)cos(nx) dx = \frac{1}{\pi} \frac{cos(n\pi)+1}{1-n^2}$

 

$b_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1sin(nx)dx + \int\limits_{0}^{\pi}sin(x)sin(nx) dx)=\frac{1}{\pi} (\frac{cos(nx)}{n}|_{-\pi}^{0} + \frac{\pi}{2}) = \frac{1}{\pi} (\frac{1-(-1)^n}{n}+\frac{\pi}{2}) $

 

I think my solution is wrong, anyone could help me? I so sad...

asked in Calculus by (113 points)  
edited by | 101 views
Fourier Series is out of GATE syllabus , right ?
please be kind with me, yes

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.


Top Users Apr 2017
  1. akash.dinkar12

    3508 Points

  2. Divya Bharti

    2542 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Shubham Sharma 2

    1610 Points

  7. Debashish Deka

    1588 Points

  8. Arunav Khare

    1454 Points

  9. Kapil

    1424 Points

  10. Arjun

    1420 Points

Monthly Topper: Rs. 500 gift card

22,076 questions
28,040 answers
63,230 comments
24,135 users