GATE CSE
First time here? Checkout the FAQ!
x
0 votes
111 views

Example of one Question for preparing exam: Fourier series of function:

be like as: $ f(x)=\frac{a_0}{2}+\Sigma_{n=1}^{\infty} (a_n \cos nx+b_n \sin nx) $

 

(Question ) so the coefficient is: $a_n=0,n=2k+1,b_n=0,n=2k$

I want to find that how the coefficient is solved, this is my approach:

$a_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1cos(nx)dx + \int\limits_{0}^{\pi}sin(x)cos(nx) dx) = \frac{1}{\pi} \int\limits_{0}^{\pi}sin(x)cos(nx) dx = \frac{1}{\pi} \frac{cos(n\pi)+1}{1-n^2}$

 

$b_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1sin(nx)dx + \int\limits_{0}^{\pi}sin(x)sin(nx) dx)=\frac{1}{\pi} (\frac{cos(nx)}{n}|_{-\pi}^{0} + \frac{\pi}{2}) = \frac{1}{\pi} (\frac{1-(-1)^n}{n}+\frac{\pi}{2}) $

 

I think my solution is wrong, anyone could help me? I so sad...

asked in Calculus by (113 points)  
edited by | 111 views
Fourier Series is out of GATE syllabus , right ?
please be kind with me, yes

Please log in or register to answer this question.



Top Users Jun 2017
  1. Bikram

    3704 Points

  2. Hemant Parihar

    1484 Points

  3. junaid ahmad

    1432 Points

  4. Arnab Bhadra

    1408 Points

  5. Niraj Singh 2

    1311 Points

  6. Rupendra Choudhary

    1194 Points

  7. rahul sharma 5

    1120 Points

  8. Arjun

    930 Points

  9. srestha

    928 Points

  10. Debashish Deka

    896 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 19 - 25
  1. Bikram

    1960 Points

  2. Niraj Singh 2

    1306 Points

  3. junaid ahmad

    502 Points

  4. sudsho

    410 Points

  5. akankshadewangan24

    388 Points


23,355 questions
30,065 answers
67,365 comments
28,382 users