GATE CSE
First time here? Checkout the FAQ!
x
0 votes
126 views

Example of one Question for preparing exam: Fourier series of function:

be like as: $ f(x)=\frac{a_0}{2}+\Sigma_{n=1}^{\infty} (a_n \cos nx+b_n \sin nx) $

 

(Question ) so the coefficient is: $a_n=0,n=2k+1,b_n=0,n=2k$

I want to find that how the coefficient is solved, this is my approach:

$a_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1cos(nx)dx + \int\limits_{0}^{\pi}sin(x)cos(nx) dx) = \frac{1}{\pi} \int\limits_{0}^{\pi}sin(x)cos(nx) dx = \frac{1}{\pi} \frac{cos(n\pi)+1}{1-n^2}$

 

$b_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1sin(nx)dx + \int\limits_{0}^{\pi}sin(x)sin(nx) dx)=\frac{1}{\pi} (\frac{cos(nx)}{n}|_{-\pi}^{0} + \frac{\pi}{2}) = \frac{1}{\pi} (\frac{1-(-1)^n}{n}+\frac{\pi}{2}) $

 

I think my solution is wrong, anyone could help me? I so sad...

asked in Calculus by (113 points)  
edited by | 126 views
Fourier Series is out of GATE syllabus , right ?
please be kind with me, yes

Please log in or register to answer this question.



Top Users Aug 2017
  1. ABKUNDAN

    4658 Points

  2. Bikram

    4138 Points

  3. akash.dinkar12

    3144 Points

  4. rahul sharma 5

    2928 Points

  5. manu00x

    2682 Points

  6. makhdoom ghaya

    2390 Points

  7. just_bhavana

    2058 Points

  8. Tesla!

    1782 Points

  9. pawan kumarln

    1574 Points

  10. learner_geek

    1558 Points


24,892 questions
31,967 answers
74,214 comments
30,083 users