GATE CSE
First time here? Checkout the FAQ!
x
0 votes
105 views

Example of one Question for preparing exam: Fourier series of function:

be like as: $ f(x)=\frac{a_0}{2}+\Sigma_{n=1}^{\infty} (a_n \cos nx+b_n \sin nx) $

 

(Question ) so the coefficient is: $a_n=0,n=2k+1,b_n=0,n=2k$

I want to find that how the coefficient is solved, this is my approach:

$a_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1cos(nx)dx + \int\limits_{0}^{\pi}sin(x)cos(nx) dx) = \frac{1}{\pi} \int\limits_{0}^{\pi}sin(x)cos(nx) dx = \frac{1}{\pi} \frac{cos(n\pi)+1}{1-n^2}$

 

$b_{n} = \frac{1}{\pi} (\int\limits_{-\pi}^{0}-1sin(nx)dx + \int\limits_{0}^{\pi}sin(x)sin(nx) dx)=\frac{1}{\pi} (\frac{cos(nx)}{n}|_{-\pi}^{0} + \frac{\pi}{2}) = \frac{1}{\pi} (\frac{1-(-1)^n}{n}+\frac{\pi}{2}) $

 

I think my solution is wrong, anyone could help me? I so sad...

asked in Calculus by (113 points)  
edited by | 105 views
Fourier Series is out of GATE syllabus , right ?
please be kind with me, yes

Please log in or register to answer this question.



Top Users May 2017
  1. akash.dinkar12

    3154 Points

  2. pawan kumarln

    1636 Points

  3. sh!va

    1590 Points

  4. Arjun

    1350 Points

  5. Bikram

    1298 Points

  6. Devshree Dubey

    1246 Points

  7. Angkit

    1044 Points

  8. Debashish Deka

    1042 Points

  9. LeenSharma

    880 Points

  10. srestha

    706 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    384 Points

  2. pawan kumarln

    262 Points

  3. Ahwan

    236 Points

  4. Arnab Bhadra

    136 Points

  5. LeenSharma

    118 Points


22,770 questions
29,090 answers
65,119 comments
27,635 users