GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
684 views
Suppose $p$ is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and $p$ has a Poisson distribution with mean $3$. What is the probability of observing fewer than 3 cars during any given minute in this interval?

(A) $8/(2e^{3})$

(B) $9/(2e^{3})$

(C) $17/(2e^{3})$

(D) $26/(2e^{3})$
asked in Probability by Veteran (12.9k points)  
retagged by | 684 views

1 Answer

+12 votes
Best answer
Poisson Probability Density Function (with mean $\lambda$) = $\lambda^{k} / (e^{\lambda}k!)$,

We have to sum the probability density function for $k = 0,1$ and $2$ and $\lambda$ = 3 (thus finding the cumulative mass function)

=$(1/e^3) + (3/e^3) + (9/2e^3)$

=$17/(2e^{3})$
answered by Veteran (281k points)  
selected by


Top Users Mar 2017
  1. rude

    4272 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2244 Points

  6. 2018

    1414 Points

  7. Vignesh Sekar

    1338 Points

  8. Akriti sood

    1246 Points

  9. Bikram

    1246 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,452 questions
26,771 answers
60,972 comments
22,985 users