GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
130 views

Let A has n vertices. If Ā is connected graph then the maximum number of edges that A can have is

a) (n-1)(n-2)/2
b) n(n-1)/2
c) n-1
d) n

asked in Mathematical Logic by Active (1k points)   | 130 views

I am getting option a , but by substitution , what is the standard way to solve it. I solve it for n=3,4 ,5 and got option a

think like ...

you have a grapg A with n vertices.  excepts one vertex, all n-1 vertices are making a complete graph with total

(n-1)(n-2)/2 edges. Now if we see complement of this graph then it would be connected right ( A' ->star graph)??

And if we add any more edge in A,  then it would make its complement disconnected ...

Note-  we are not told that A is also connected.. only A' is connected.

just give it  think ..

1 Answer

+2 votes
Best answer
If  $A^c$   is connected then minimum no. of  edges in $A^c$   are n-1

so  maximum no. of edges in A= Total edges - minimum edges in $A^c$

= $_{2}^{n}\textrm{c}$ - (n-1)

=n(n-1)/2 -(n-1)

=(n-1)(n-2)/2

option A)
answered by Loyal (4k points)  
selected by
option A is correct.


Top Users Sep 2017
  1. Habibkhan

    6334 Points

  2. Warrior

    2202 Points

  3. Arjun

    2150 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. SiddharthMahapatra

    1718 Points

  7. Bikram

    1706 Points

  8. makhdoom ghaya

    1650 Points

  9. A_i_$_h

    1518 Points

  10. rishu_darkshadow

    1512 Points


25,978 questions
33,554 answers
79,344 comments
31,011 users