GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
121 views

Let A has n vertices. If Ā is connected graph then the maximum number of edges that A can have is

a) (n-1)(n-2)/2
b) n(n-1)/2
c) n-1
d) n

asked in Mathematical Logic by Junior (929 points)   | 121 views

I am getting option a , but by substitution , what is the standard way to solve it. I solve it for n=3,4 ,5 and got option a

think like ...

you have a grapg A with n vertices.  excepts one vertex, all n-1 vertices are making a complete graph with total

(n-1)(n-2)/2 edges. Now if we see complement of this graph then it would be connected right ( A' ->star graph)??

And if we add any more edge in A,  then it would make its complement disconnected ...

Note-  we are not told that A is also connected.. only A' is connected.

just give it  think ..

1 Answer

+2 votes
Best answer
If  $A^c$   is connected then minimum no. of  edges in $A^c$   are n-1

so  maximum no. of edges in A= Total edges - minimum edges in $A^c$

= $_{2}^{n}\textrm{c}$ - (n-1)

=n(n-1)/2 -(n-1)

=(n-1)(n-2)/2

option A)
answered by Loyal (3.9k points)  
selected by
option A is correct.


Top Users May 2017
  1. akash.dinkar12

    3308 Points

  2. pawan kumarln

    1884 Points

  3. Bikram

    1656 Points

  4. sh!va

    1640 Points

  5. Arjun

    1396 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1162 Points

  8. Angkit

    1048 Points

  9. LeenSharma

    1010 Points

  10. Arunav Khare

    754 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    742 Points

  2. pawan kumarln

    510 Points

  3. Arnab Bhadra

    490 Points

  4. bharti

    304 Points

  5. LeenSharma

    248 Points


22,832 questions
29,158 answers
65,233 comments
27,673 users