GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
177 views

Please solve the following question:

asked in Probability by Veteran (11.7k points)   | 177 views

2 Answers

+3 votes

Suppose you have an event that has 2-equally likely possibilities i.e, $X = a$ and $X = b$.

Clearly, $E(x)$ $=$ $(a+b)/2$ $=$ $1$

and $E(x^2)$ $=$ $(a^2 + b^2)/2$ $=$ $1$

Simplifying above two equations we get : $a + b = 2$ and $a^2 + b^2 = 2$

Putting $a = 2 - b$ on equation 2 and then solving $(2-b)^2 + b^2 = 2$, we get $a = 1$ and $b = 1$

Now,  E(X100) = (1100 + 1100)/2  = 1

Hence (B) is correct answer.

answered by Veteran (22k points)  
edited by
This question is based on probability distribution, you solved it like some apti question. E(x) is the mean.
can you please explain your logic?
0 votes

E(X100) = E( (X50)2 )

Now, as we go on reducing, we get E(X25). Now, E(X25) = E( X24.X)

We know that E(A.B) = E(A). E(B) for independent events A and B.

So, E( X24.X) = E(X24). E(X) = 1    (I am not sure at this step)

 

answered by Veteran (10.7k points)  
reshown by

E( X24.X) = E(X24). E(X) = 1    

this is correct when one function is independent of other i.e E(x.y) =E(X).E(Y).(when x,y are independent)

CAN WE SAY X24 is independent of X ?

@Agrasar. I think I got the solution. Going with the definition of expectation,

if s={x1,x2.........,xn} is the sample space then,

E(X2) = $\sum_{r\epsilon s}^{}$ X(r=s)2.P(r)     ..................(1)

E(X) = $\sum_{r\epsilon s}^{}$ X(r=s).P(r)        ..................(2)

Now, (1) and (2) are both equal which implies X(r=s)2=X(r=s)       ..................(3)

Now, lets consider what value we get for E(X3).

E(X3)

= $\sum_{r\epsilon s}^{}$ X(r=s)3.P(r)

= $\sum_{r\epsilon s}^{}$ X(r=s)2. X(r=s) .P(r)

= $\sum_{r\epsilon s}^{}$ X(r=s). X(r=s) .P(r)     .................from (3)

= E(X2)

=1

Similarly, we can go on computing for E(X100).

Thus, I think, E(X100) = 1

it should be 1

E(x100) =E(x50 ) (becoz E(X50^2) =E(X100)

            =E(X25)

            =E(X12 . X)

            =E(X6 . X)

            =E(X3.X)

           =E(X^4)

          =E((x^2)^2)

          =E(X^2)

          =E(X)

          =1
@cse23. They have give that E(X2)=E(X) and not E(X100)=E(X50). You are concluding that both things are same which is not correct I think unless they get proved by some formula.

So, both things are different. I had also done the same but later realised that its not correct.
but 100 =(50)^2 ryt?
@cse23. yes but there is difference between x and x^50
Top Users Jan 2017
  1. Debashish Deka

    8322 Points

  2. sudsho

    5166 Points

  3. Habibkhan

    4718 Points

  4. Vijay Thakur

    4468 Points

  5. Bikram

    4420 Points

  6. saurabh rai

    4212 Points

  7. Arjun

    4072 Points

  8. santhoshdevulapally

    3732 Points

  9. Sushant Gokhale

    3514 Points

  10. GateSet

    3336 Points

Monthly Topper: Rs. 500 gift card

19,157 questions
24,065 answers
52,872 comments
20,288 users