GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
163 views
Evaluate the following definite integral :

$\int \limits_0^1 \log \left(\frac{1}{x} - 1 \right)$
asked in Calculus by Veteran (21.3k points)   | 163 views
Apply integration by parts,

it will be evaluated to 0.
Yes, answer is 0, but i didn't get it.

Let me try once more.
by parts we r getting $x log(1/x-1)+log(1-x) =0$

Your 2nd term is wrong.

it is -ln(1 - x)

why r u trying with ln, try with simple log
still no difference
yes, my mistake :(

2 Answers

+2 votes
Applying the property of logarithms:

$log(\frac{1}{x}-1) = log(\frac{1-x}{x}) = log(1-x) - log(x)$

Integrating from 0 to 1 we can see that the same values are repeated in each term thus reducing the answer to zero.
answered by (499 points)  
which property it is ?
Since log is a monotonically increasing function:

 $\int_{0}^{1} log(x) = \int_{0}^{1}log(1-x)$

and we know that log(a/b) = log(a) - log(b)
0 votes
ans is 0
still i want to cnfirm
xlg((1/x)-1)-log(1-x)
on putting x=0 /////     lg((1/x)-1) this will be undefined
answered by Junior (605 points)  

Related questions

0 votes
1 answer
2
asked in Calculus by Akriti sood Veteran (10.2k points)   | 83 views
0 votes
2 answers
3
Top Users Jan 2017
  1. Debashish Deka

    7906 Points

  2. Habibkhan

    4736 Points

  3. Vijay Thakur

    4474 Points

  4. sudsho

    4318 Points

  5. saurabh rai

    4200 Points

  6. Arjun

    3638 Points

  7. Bikram

    3500 Points

  8. santhoshdevulapally

    3470 Points

  9. GateSet

    3228 Points

  10. Sushant Gokhale

    3116 Points

Monthly Topper: Rs. 500 gift card

18,944 questions
23,897 answers
52,119 comments
20,213 users