GATE CSE
First time here? Checkout the FAQ!
x
0 votes
195 views
In the cartesian plane, selection of a point P along the y axis in [0,2] is uniformly random. Similarly selection of a point Q along the x axis in [0,2] also uniformly distributed. What is the probability of the area of the triangle POQ to be less than or equal to 1, where O is the origin ?
asked in Probability by Veteran (41.3k points)   | 195 views
i found 0.846. Please verify.
I am getting 0.5
upload image,how you did it.

1 Answer

0 votes

Area of POQ=$\frac{1}{2}*2*2=2$

Area less than or equal to 1 is $\frac{1}{2}*1*2=1$

So, Probability of POQ less than equal to 1 is $\frac{1}{2}=0.5$

answered by Veteran (51.8k points)  

You have not considered the part x = [1,2] where y can be in range [0,$\frac{2}{x}$]

Solution:

we need $\frac{xy}{2} \leq 1$ Or, $xy \leq 2$

Just take the area under this rectangular hyperbola bounded by four lines:

y=0,x=0,x=2,y=2

Required area = $\frac{1+\ln (2)}{2}$

=>P = 0.846

Alternatively,

We can do by the integration method in two parts

  • first, x from zero to 1 => p = 0.5 [ valid y range here is [0,2] ]
  • second , x from 1 to 2 => p = 0.346 [ valid y range here is [0,2/x] ]
  • P = 0.846
Can you Please Explain the the Integration part i.e. how you are getting the values?
Top Users Feb 2017
  1. Arjun

    5386 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2236 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,021 answers
59,689 comments
22,131 users