GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
146 views
I've been struggling to come to exact solution for this. Master's theorem is not applicable and likely way to get to answer is Recursion tree. Which is giving me Theta(n) as an answer.

Steps : =>

1)  T(n) = 2T(n/4) + √3

2) Emerging Pattern => (1/2^k) * n

3) Considering when we break down to T(1) : :   (1/2^k) * n  =1

4) k = log (n)

5) Each level has 2^i nodes :: 2^(log (n)) :=> n

6) If you sum up cost , n + n/2 + n/4 + ..... = n/2

Which is incorrect ,

Answer given is ( √n log n ) , would appreciate if someone could shed light how so ?
asked in Algorithms by Junior (759 points)   | 146 views
why masters theorem not applicable
Case (III) Regularity condition fails.
It is not case 3.  It is Case 1     $\sqrt {3}$ =$O(n^{1/2 - e})$
My bad , it is case (I) , but then  √3 =O(n1/2−e) does not always hold , so is it still valid ?

 

And , if you apply considering it does hold , answer given is ( √n log n ) and master's theorem would gives us √n .

2 Answers

+3 votes
Adding cost of each level;

$\begin{align*} T(n) &= 2^0.\sqrt{3} + 2^1.\sqrt{3} + 2^2.\sqrt{3} + .... + 2^{\log_4 n}.\sqrt{3} \\ &= \sqrt{3}.\left [ \frac{2^{\log_4 {n}+1}-1}{2-1} \right ] \\ &= \sqrt{3}.O(n^{\frac{1}{2}}) \\ &= O(\sqrt{n}) \end{align*}$
answered by Veteran (37.5k points)  

This is right , I was summing up thinking it's √3n ; anyways I'm not able to figure out  if √n * log n is wrong answer then ? 

+3 votes

In these type of questions where master method doesnt apply you can do the following

$T(n) = 2T(n/4) + \sqrt{3}$

Reframe it like this, by putting i in the specified positions

$T(n) = 2^{i}T(n/4^{i}) + i\sqrt{3}$

Now for n/4i = 1, put i = log4n

So the equation becomes

$T(n) = 2^{log_{4}n} + log_{4}n\sqrt{3}$

Or

$T(n) = n^{log_{4}2} + log_{4}n\sqrt{3}$

$T(n) = \sqrt{n} + log_{4}n\sqrt{3}$

And therefore

$T(n) = O(\sqrt{n})$

answered by Junior (767 points)  

Related questions

+2 votes
2 answers
1
0 votes
1 answer
2
asked in Algorithms by yourarnav (225 points)   | 66 views
Top Users Jan 2017
  1. Debashish Deka

    9614 Points

  2. sudsho

    5554 Points

  3. Habibkhan

    4878 Points

  4. Bikram

    4774 Points

  5. Vijay Thakur

    4498 Points

  6. Arjun

    4408 Points

  7. saurabh rai

    4236 Points

  8. Sushant Gokhale

    4112 Points

  9. Kapil

    3830 Points

  10. santhoshdevulapally

    3808 Points

Monthly Topper: Rs. 500 gift card

19,371 questions
24,203 answers
53,828 comments
20,368 users