GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
97 views

asked in Mathematical Logic by Boss (6k points)   | 97 views

1 Answer

+5 votes
Best answer
Given $P=\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2}\\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$

P is an orthogonal matrix because $P.P^{T}=I=P^{T}.P$

So, $Q^{2005} =(PAP^{T})(PAP^{T})(PAP^{T})....(PAP^{T})$ 2005 times.

Therefore, X be written as $P^{T} A^{2005} P = A^{2005}$

$A^{2}= \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix}$

$A^{3}= \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 3\\
 0& 1
\end{pmatrix}$

Similarly
$A^{2005}= \begin{pmatrix}
1 & 2005\\
 0& 1
\end{pmatrix}$
answered by Loyal (4.4k points)  
selected by
Nice explaination :)
Is there any pattern to find the orthogonal property. It is not mentioned that matix is orthogonal. Do we need to check explicitly(by calculating P*P-transpose) its orthogonal  property or is there any tip to figure it out whether the matrix is orthogonal or not?


Top Users Aug 2017
  1. ABKUNDAN

    4654 Points

  2. Bikram

    4012 Points

  3. akash.dinkar12

    3136 Points

  4. rahul sharma 5

    2832 Points

  5. manu00x

    2644 Points

  6. makhdoom ghaya

    2370 Points

  7. just_bhavana

    2040 Points

  8. Tesla!

    1742 Points

  9. pawan kumarln

    1574 Points

  10. learner_geek

    1554 Points


24,864 questions
31,941 answers
74,059 comments
30,062 users