GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
87 views

asked in Mathematical Logic by Boss (5.1k points)   | 87 views

1 Answer

+5 votes
Best answer
Given $P=\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2}\\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$

P is an orthogonal matrix because $P.P^{T}=I=P^{T}.P$

So, $Q^{2005} =(PAP^{T})(PAP^{T})(PAP^{T})....(PAP^{T})$ 2005 times.

Therefore, X be written as $P^{T} A^{2005} P = A^{2005}$

$A^{2}= \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix}$

$A^{3}= \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 3\\
 0& 1
\end{pmatrix}$

Similarly
$A^{2005}= \begin{pmatrix}
1 & 2005\\
 0& 1
\end{pmatrix}$
answered by Loyal (4.1k points)  
selected by
Nice explaination :)
Is there any pattern to find the orthogonal property. It is not mentioned that matix is orthogonal. Do we need to check explicitly(by calculating P*P-transpose) its orthogonal  property or is there any tip to figure it out whether the matrix is orthogonal or not?


Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2734 Points

  5. Debashish Deka

    2592 Points

  6. 2018

    1544 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1342 Points

  9. Bikram

    1312 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,508 questions
26,832 answers
61,091 comments
23,146 users