GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
95 views

asked in Mathematical Logic by Boss (5.8k points)   | 95 views

1 Answer

+5 votes
Best answer
Given $P=\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2}\\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$

P is an orthogonal matrix because $P.P^{T}=I=P^{T}.P$

So, $Q^{2005} =(PAP^{T})(PAP^{T})(PAP^{T})....(PAP^{T})$ 2005 times.

Therefore, X be written as $P^{T} A^{2005} P = A^{2005}$

$A^{2}= \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix}$

$A^{3}= \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 3\\
 0& 1
\end{pmatrix}$

Similarly
$A^{2005}= \begin{pmatrix}
1 & 2005\\
 0& 1
\end{pmatrix}$
answered by Loyal (4.3k points)  
selected by
Nice explaination :)
Is there any pattern to find the orthogonal property. It is not mentioned that matix is orthogonal. Do we need to check explicitly(by calculating P*P-transpose) its orthogonal  property or is there any tip to figure it out whether the matrix is orthogonal or not?


Top Users Jun 2017
  1. Bikram

    3686 Points

  2. Hemant Parihar

    1480 Points

  3. junaid ahmad

    1432 Points

  4. Arnab Bhadra

    1334 Points

  5. Niraj Singh 2

    1311 Points

  6. Rupendra Choudhary

    1194 Points

  7. rahul sharma 5

    1110 Points

  8. Arjun

    916 Points

  9. srestha

    898 Points

  10. Debashish Deka

    896 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 19 - 25
  1. Bikram

    1942 Points

  2. Niraj Singh 2

    1306 Points

  3. junaid ahmad

    502 Points

  4. sudsho

    410 Points

  5. just_bhavana

    368 Points


23,347 questions
30,050 answers
67,326 comments
28,372 users