GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
90 views

asked in Mathematical Logic by Boss (5.5k points)   | 90 views

1 Answer

+5 votes
Best answer
Given $P=\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2}\\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$

P is an orthogonal matrix because $P.P^{T}=I=P^{T}.P$

So, $Q^{2005} =(PAP^{T})(PAP^{T})(PAP^{T})....(PAP^{T})$ 2005 times.

Therefore, X be written as $P^{T} A^{2005} P = A^{2005}$

$A^{2}= \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix}$

$A^{3}= \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 3\\
 0& 1
\end{pmatrix}$

Similarly
$A^{2005}= \begin{pmatrix}
1 & 2005\\
 0& 1
\end{pmatrix}$
answered by Loyal (4.2k points)  
selected by
Nice explaination :)
Is there any pattern to find the orthogonal property. It is not mentioned that matix is orthogonal. Do we need to check explicitly(by calculating P*P-transpose) its orthogonal  property or is there any tip to figure it out whether the matrix is orthogonal or not?


Top Users Apr 2017
  1. akash.dinkar12

    3796 Points

  2. Divya Bharti

    2716 Points

  3. Deepthi_ts

    2294 Points

  4. rude

    2142 Points

  5. Tesla!

    1888 Points

  6. Kapil

    1786 Points

  7. Sanjay Sharma

    1702 Points

  8. Debashish Deka

    1690 Points

  9. Prashant.

    1672 Points

  10. Arjun

    1614 Points

Monthly Topper: Rs. 500 gift card

22,149 questions
28,146 answers
63,542 comments
24,309 users