GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
74 views

asked in Mathematical Logic by Loyal (3.9k points)   | 74 views

1 Answer

+4 votes
Best answer
Given $P=\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2}\\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$

P is an orthogonal matrix because $P.P^{T}=I=P^{T}.P$

So, $Q^{2005} =(PAP^{T})(PAP^{T})(PAP^{T})....(PAP^{T})$ 2005 times.

Therefore, X be written as $P^{T} A^{2005} P = A^{2005}$

$A^{2}= \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix}$

$A^{3}= \begin{pmatrix}
1 & 2\\
 0& 1
\end{pmatrix} .  \begin{pmatrix}
1 & 1\\
 0& 1
\end{pmatrix} = \begin{pmatrix}
1 & 3\\
 0& 1
\end{pmatrix}$

Similarly
$A^{2005}= \begin{pmatrix}
1 & 2005\\
 0& 1
\end{pmatrix}$
answered by Loyal (4k points)  
selected by
Nice explaination :)
Is there any pattern to find the orthogonal property. It is not mentioned that matix is orthogonal. Do we need to check explicitly(by calculating P*P-transpose) its orthogonal  property or is there any tip to figure it out whether the matrix is orthogonal or not?
Top Users Jan 2017
  1. Debashish Deka

    8322 Points

  2. sudsho

    5166 Points

  3. Habibkhan

    4718 Points

  4. Vijay Thakur

    4468 Points

  5. Bikram

    4420 Points

  6. saurabh rai

    4212 Points

  7. Arjun

    4072 Points

  8. santhoshdevulapally

    3732 Points

  9. Sushant Gokhale

    3514 Points

  10. GateSet

    3336 Points

Monthly Topper: Rs. 500 gift card

19,155 questions
24,065 answers
52,872 comments
20,288 users