GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
109 views

Given $x,y,z$ are Boolean variables and $f(x,y,z)=f(y',x',z)$. How many such functions are possible with $x, y, z$?

  1. $0$
  2. $2^2$
  3. $2^4$
  4. $2^6$ 
asked in Set Theory & Algebra by Junior (943 points)   | 109 views
yes $2^6$
i want explanation i didn't get the explanation which was given in source.
unable to understand the que?? wht is que asking??

plz explain

1 Answer

+5 votes
Best answer

In a three variable boolean function if all of the truth table rows are independent w.r.t the O/P, then total no of boolean function possible is $2^{2^3} = 256$

  • because in the O/P of a truth table we have $2^n= 2^3$ places to fill with 0 or 1. 
  • This is possible because we have not specified any constraint on the boolean function.

 The question here provide us with a constraint equation $f(x,y,z) = f(y',x',z)$

because of this constraint, all 8 rows of the truth table are not independent now. They are in 6 groups.

  1. $f(0,0,0) \ \ \ \text{ and } \ \ f(1,1,0)$ are having same O/P.
  2. $f(0,0,1) \text{ and } f(1,1,0)$ are having same O/P.
  3. $f(0,1,0) ,f(0,1,1) ,f(1,0,0) ,f(1,0,1) ,$ are independent.

So in these 6 rows of the truth table, we can fill up O/P with 0 or 1. 

$\Rightarrow$ total $2^6$ functions possible.

note : we can also solve by calculating no of minterms and taking combinations of them. 

answered by Veteran (48k points)  
selected by
highly appreciated !

question has same logic as Self dual function



Top Users Jun 2017
  1. Bikram

    3686 Points

  2. Hemant Parihar

    1480 Points

  3. junaid ahmad

    1432 Points

  4. Arnab Bhadra

    1334 Points

  5. Niraj Singh 2

    1311 Points

  6. Rupendra Choudhary

    1194 Points

  7. rahul sharma 5

    1110 Points

  8. Arjun

    916 Points

  9. srestha

    898 Points

  10. Debashish Deka

    896 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 19 - 25
  1. Bikram

    1942 Points

  2. Niraj Singh 2

    1306 Points

  3. junaid ahmad

    502 Points

  4. sudsho

    410 Points

  5. just_bhavana

    368 Points


23,347 questions
30,050 answers
67,326 comments
28,372 users