GATE CSE
First time here? Checkout the FAQ!
x
0 votes
85 views

Let X and Y be two independent random variables. Suppose, we know that Var(√5X − √2Y) = 15 and Var(−√2X + Y) = 6.5. Var(X) and Var(Y) are:

   
   
 

(A) Var(X) = 2.5, Var(Y) = 2

 

(B) Var(X) = 2, Var(Y) = 2.5

 

(C) Var(X) = 3, Var(Y) = 1.5

 

(D) Var(X) = 1.5, Var(Y) = 2.5

asked in Probability by Junior (911 points)  
edited by | 85 views

1 Answer

+3 votes
Best answer

For this question , it should be kept in mind that if Var(X) and Var(Y) be the variances of X and Y random variables and a and b be constants , then :

Var ( aX + bY ) = a2 Var(X)  + b2 Var(Y) + 2ab Covar(X,Y)  where Covar(X,Y) is the covariance between the 2 variables used.

Also if X and Y are independent , then Covar(X , Y) = 0 , hence the above equation for the purpose of the given question is reduced to :

Var ( aX + bY ) = a2 Var(X)  + b2 Var(Y)

Now given ,

Var(√5X − √2Y) = 15     ⇒    5 Var(X) + 2 Var(Y)   =  15

and  Var(−√2X + Y) = 6.5.  ⇒ 2 Var(X) + Var(Y)    =   6.5

Hence solving these equations for Var(X) and Var(Y) , we get 

Var(X)  =  2

Var(Y)  = 2.5

Hence B) is the correct option.

 

answered by Veteran (65k points)  
selected by
Top Users Feb 2017
  1. Arjun

    5386 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2236 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,021 answers
59,689 comments
22,131 users