GATE CSE
First time here? Checkout the FAQ!
x
+4 votes
150 views

The recurrence equation

  • $T(1) = 1$
  • $T(n) = 2T(n-1) + n, n \geq 2$

evaluates to $a.2^{n+1} - bn - c$, what is the value of $100a+ 10b+c$?

 

 

 

asked in Algorithms by Active (1.4k points)   | 150 views

1 Answer

+6 votes
Best answer

$T(1) = 1$

$T(n) = 2T(n-1) + n$

So, $T(2) = 2+2=4, T(3) = 11. T(4) = 26$.

We are given, $T(n) = a.2^{n+1} - b.n - c$

So,

$T(2) = 4 \implies 8a - 2b - c = 4 \rightarrow(1)$

$T(3) = 11 \implies 16a - 3b - c = 11 \rightarrow(2)$

$T(4) = 26 \implies 32a - 4b - c = 26 \rightarrow(3)$

$(2) - (1) \implies 8a - b = 7 \rightarrow(4)$

$(3)-(2) \implies 16a - b = 15 \rightarrow(5)$

$(5) - (4) \implies 8a = 8, a = 1$

Now, from $(4)$, we get $b = 1$.

From $(1)$ we get $c = 2$.

So, $100a + 10b + c = 112$.

 


Now, lets solve by recurrence.

$T(n) = 2T(n-1) + n \\=2^2T(n-2) + 2.(n-1) + n \\=2^{3}T(n-3) + 2^2 (n-2) + 2(n-1) + n\\= \dots\\= 2^{n-1}T(1) + 2^{n-2}.2+ 2^{n-3}3+ \dots + n\\= 2^{n-1} + 2. 2^{n-2} + 3. 2^{n-3} + \dots + n.2^{n-n}\rightarrow(1)$

This is an AGP series with $d=1$ and $r= 0.5$. But I'm not using its properties. Multiplying (1) by 2 gives,

$2.T(n) = 2^{n} + 2. 2^{n-1} + 3. 2^{n-2} + \dots + n.2^{1} \rightarrow(2)$

$(2) - (1) \implies T(n) = 2^n + 2^{n-1} + 2^{n-2} + \dots +2^1 - n \\= 2^{n+1} - 2 - n.$

$\because 2^1 + 2^2 + \dots +2^n = 2^{n+1} - 1 - 2^0 = 2^{n+1} - 2$

So, $a = 1, b = 1, c = 2$ (care for the negative sign in equation of question)

answered by Veteran (285k points)  
selected by

Related questions

+2 votes
1 answer
1
+1 vote
3 answers
2
0 votes
2 answers
3
asked in Algorithms by Null&Void Active (1.9k points)   | 44 views


Top Users May 2017
  1. akash.dinkar12

    3598 Points

  2. pawan kumarln

    2314 Points

  3. Bikram

    1958 Points

  4. Arjun

    1862 Points

  5. sh!va

    1682 Points

  6. Debashish Deka

    1296 Points

  7. Devshree Dubey

    1282 Points

  8. Arunav Khare

    1122 Points

  9. Angkit

    1072 Points

  10. LeenSharma

    1028 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 29 - Jun 04
  1. Arunav Khare

    246 Points

  2. Arjun

    212 Points

  3. Rupendra Choudhary

    116 Points

  4. Arnab Bhadra

    108 Points

  5. pawan kumarln

    108 Points


22,912 questions
29,252 answers
65,411 comments
27,750 users