GATE CSE
First time here? Checkout the FAQ!
x
+4 votes
138 views

The recurrence equation

  • $T(1) = 1$
  • $T(n) = 2T(n-1) + n, n \geq 2$

evaluates to $a.2^{n+1} - bn - c$, what is the value of $100a+ 10b+c$?

 

 

 

asked in Algorithms by Active (1.2k points)   | 138 views

1 Answer

+6 votes
Best answer

$T(1) = 1$

$T(n) = 2T(n-1) + n$

So, $T(2) = 2+2=4, T(3) = 11. T(4) = 26$.

We are given, $T(n) = a.2^{n+1} - b.n - c$

So,

$T(2) = 4 \implies 8a - 2b - c = 4 \rightarrow(1)$

$T(3) = 11 \implies 16a - 3b - c = 11 \rightarrow(2)$

$T(4) = 26 \implies 32a - 4b - c = 26 \rightarrow(3)$

$(2) - (1) \implies 8a - b = 7 \rightarrow(4)$

$(3)-(2) \implies 16a - b = 15 \rightarrow(5)$

$(5) - (4) \implies 8a = 8, a = 1$

Now, from $(4)$, we get $b = 1$.

From $(1)$ we get $c = 2$.

So, $100a + 10b + c = 112$.

 


Now, lets solve by recurrence.

$T(n) = 2T(n-1) + n \\=2^2T(n-2) + 2.(n-1) + n \\=2^{3}T(n-3) + 2^2 (n-2) + 2(n-1) + n\\= \dots\\= 2^{n-1}T(1) + 2^{n-2}.2+ 2^{n-3}3+ \dots + n\\= 2^{n-1} + 2. 2^{n-2} + 3. 2^{n-3} + \dots + n.2^{n-n}\rightarrow(1)$

This is an AGP series with $d=1$ and $r= 0.5$. But I'm not using its properties. Multiplying (1) by 2 gives,

$2.T(n) = 2^{n} + 2. 2^{n-1} + 3. 2^{n-2} + \dots + n.2^{1} \rightarrow(2)$

$(2) - (1) \implies T(n) = 2^n + 2^{n-1} + 2^{n-2} + \dots +2^1 - n \\= 2^{n+1} - 2 - n.$

$\because 2^1 + 2^2 + \dots +2^n = 2^{n+1} - 1 - 2^0 = 2^{n+1} - 2$

So, $a = 1, b = 1, c = 2$ (care for the negative sign in equation of question)

answered by Veteran (273k points)  
selected by

Related questions

+2 votes
1 answer
1
+1 vote
3 answers
2
0 votes
2 answers
3
asked in Algorithms by Rahul Jain25 Loyal (4.5k points)   | 101 views
Top Users Jan 2017
  1. Debashish Deka

    8126 Points

  2. sudsho

    5042 Points

  3. Habibkhan

    4706 Points

  4. Vijay Thakur

    4458 Points

  5. Bikram

    4348 Points

  6. saurabh rai

    4212 Points

  7. Arjun

    4010 Points

  8. santhoshdevulapally

    3722 Points

  9. GateSet

    3292 Points

  10. Sushant Gokhale

    3286 Points

Monthly Topper: Rs. 500 gift card

19,122 questions
24,034 answers
52,724 comments
20,276 users