GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
80 views

The solution of the recursive relation 
for n ≥ 2, a0 = 1, a1 = 0
image:EM4/Q10a.PNG

  1.  image:EM4/O10a.PNG
  2.   image:EM4/O10b.PNG

     
  3.   image:EM4/O10c.PNG
  4.   image:EM4/O10d.PNG
asked in Combinatory by Veteran (10.2k points)   | 80 views

2 Answers

+3 votes
Best answer
Put n = 1 we get $\left ( \frac{1}{2} \right )^{3} - \left ( \frac{-1}{2} \right )^{3} = \left ( \frac{1}{8} \right ) + \left ( \frac{1}{8} \right ) = \left ( \frac{1}{4} \right )$ which is matched with given reccurence relation .= 1/4

Put n= 2 we get $\left ( \frac{1}{2} \right )^{4} - \left ( \frac{-1}{2} \right )^{4} = \left ( \frac{1}{16} \right ) - \left ( \frac{1}{16} \right ) = \left ( 0 \right )$  which is matched with given reccurence relation .= 0

Put n= 3 we get $\left ( \frac{1}{2} \right )^{5} - \left ( \frac{-1}{2} \right )^{5} = \left ( \frac{1}{32} \right ) + \left ( \frac{1}{32} \right ) = \left ( \frac{1}{16} \right )$  which is matched with given reccurence relation .= (1/4 )/4 = (1/16)

So B is answer
answered by Veteran (43.2k points)  
selected by

by putting n=2 ,we will get 1/4 as a0 =1

and answer given is B actually
now check always try to put in these quetion :) but no wrongly like i did :)
thanks a lot @anirudh..
+1 vote

4 an - an-2 = 0 ...............from the given recurrance

Now, adding and subtracting an-3,

\therefore  4 an - an-2 + an-3 - an-3 = 0

\therefore  4 an - an-2 + an-3 4 an-1 = 0      (from the recurrance for an-1)

\therefore   4 an 4 an-1 - an-2 + an-3= 0  

This is  our normal recurrance now.

\therefore 4t3 - 4t2 - t +1 =0

By trial and error, 1/2 is one of the factors.

Now, we perform synthetic division.

1/2  |     4    -4       -1      1

        |          +2       -1      -1

---------------------------------------

            4     -2       -2       0

So, factorisation is

(t-1/2)(t -1)( 2t +1) = 0

So, factors are t= 1/2 , -1/2, 1

So, f(n) = c1 . (1/2)n + c2. (1)n + c3. (-1/2)n

 

Now, putting the values of a0 and a1,   we get answer B.

answered by Veteran (10.5k points)  
Top Users Jan 2017
  1. Debashish Deka

    8126 Points

  2. sudsho

    5042 Points

  3. Habibkhan

    4706 Points

  4. Vijay Thakur

    4458 Points

  5. Bikram

    4348 Points

  6. saurabh rai

    4212 Points

  7. Arjun

    4010 Points

  8. santhoshdevulapally

    3722 Points

  9. GateSet

    3292 Points

  10. Sushant Gokhale

    3286 Points

Monthly Topper: Rs. 500 gift card

19,122 questions
24,034 answers
52,724 comments
20,276 users