GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
74 views

Choose the correct alternatives (More than one may be correct).

The number of rooted binary trees with $n$ nodes is,

  1. Equal to the number of ways of multiplying $(n+1)$ matriees.
  2. Equal to the number of ways of arranging $n$ out of $2 n$ distinct elements.
  3. Equal to $\frac{1}{(n+1)}\binom{2n}{n}$.
  4. Equal to $n!$.
asked in DS by Veteran (29.5k points)   | 74 views

1 Answer

0 votes
Number of BTs with Unlabelled nodes is (2n C n )/(n+1)

Number of BTs with labelled nodes is (2n C n ) * (n!) /(n+1) .

 

So, answer is option C.

If question have asked about BTs with labelled nodes then answer is B i.e picking n out of 2n people i.e 2n C n then n can be arranged in n! ways
answered by Active (2.3k points)  
still (n+1) term would be missing in option B rt?
yes arjun sir i think he forgot to mention but still they given " Number of BTs with labelled nodes is (2n C n ) * (n!) /(n+1)"


Top Users May 2017
  1. akash.dinkar12

    3152 Points

  2. pawan kumarln

    1630 Points

  3. sh!va

    1590 Points

  4. Arjun

    1350 Points

  5. Devshree Dubey

    1246 Points

  6. Angkit

    1044 Points

  7. Debashish Deka

    1022 Points

  8. Bikram

    972 Points

  9. LeenSharma

    820 Points

  10. Prashant.

    692 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. pawan kumarln

    256 Points

  2. Ahwan

    232 Points

  3. jjayantamahata

    114 Points

  4. joshi_nitish

    114 Points

  5. Arnab Bhadra

    94 Points


22,731 questions
29,061 answers
65,094 comments
27,625 users