GATE CSE
First time here? Checkout the FAQ!
x
+7 votes
974 views

If the following system has non-trivial solution, 

$px + qy + rz = 0$

$qx + ry + pz = 0$

$rx + py + qz = 0$,

then which one of the following options is TRUE?

 

  1. $p - q + r = 0 \text{ or } p = q = -r$
  2. $p + q - r = 0 \text{ or } p = -q = r$
  3. $p + q + r = 0 \text{ or } p = q = r$
  4. $p - q + r = 0 \text{ or } p = -q = -r$
asked in Linear Algebra by Veteran (87.2k points)   | 974 views

2 Answers

+12 votes
Best answer

for non-trivial solution $$\left | A \right | = 0$$

where $\left | A \right | = \begin{bmatrix} p & q& r\\ q& r& p\\ r& p & q \end{bmatrix} = p*(rq-p^{2})-q*(q^{2}-pr)+r*(qp-r^{2})$

$=prq - p^3 - q^3 + prq + prq - r^3 \\= 3prq - p^3 - q^3 - r^3 \\=-{\left(p+q+r\right)}^3 + 3(p+q+r)(pq+qr+pr)$

now if you check the options the only options where each individual condition can make $\left | A \right | = 0$ zero is C

answered by Active (2.2k points)  
selected by
nice edit @arjun sir +1 for the edit.....

for a homogeneous equation to have a consistent solution, the general equation:

$AX=0$

must be satisfied.
If $A^{-1}$ exists then we can multiply by $A^{-1}$ on both sides and get $X=0$, which means solution is trivial.

But if $A^{-1}$ does not exist, meaning $|A|=0$, we cannot multiply both sides by $A^{-1}$ to reach $X=0$. In which case it implies that other non-trivial solutions exists.

http://math.stackexchange.com/questions/1012571/non-trivial-solutions-for-homogeneous-equations

In options

p+q+r=0 matching with answer

but p=q=r never matching

right?
+8 votes
Answer = C

If we add all the equations we get

(p+q+r)x + (p+q+r)y + (p+q+r)z = 0

which implies p+q+r=0

Only option C has p+q+r=0
answered by Active (1.2k points)  
Answer:

Related questions



Top Users Sep 2017
  1. Habibkhan

    6970 Points

  2. Warrior

    2490 Points

  3. Arjun

    2368 Points

  4. rishu_darkshadow

    2136 Points

  5. A_i_$_h

    2004 Points

  6. nikunj

    1980 Points

  7. makhdoom ghaya

    1760 Points

  8. manu00x

    1750 Points

  9. Bikram

    1744 Points

  10. SiddharthMahapatra

    1718 Points


26,060 questions
33,668 answers
79,747 comments
31,079 users