GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
91 views
How do i prove that : : : In hashing n items into a hash table with k locations, the expected number of collisions is $n - k + k( 1-\frac{1}{k})^n$ ??
asked in Algorithms by Boss (8.6k points)   | 91 views
u can take a manual example of "k " and "n" and perform the algo.. u will get it
I  don't understand.
Please provide a manual example

1 Answer

+3 votes
We have n items to insert and size of hash table of is K .

so the probability A location is empty after first insertion =  (1-probabilty of filling that location)=(1-(1/k))

so probability of A location is empty after n insertion = (1-(1/k))^n

Possible no of empty location  = k*(1-(1/k))^n

Expected No of collision = n - occupied location

                                    = n - (total location - empty location)

                                    = n- (k - k*(1-1/k)^n)

                                    =n- k + k*(1-1/k)^n
answered by Loyal (3.4k points)  
@correct
Can you tell me when to use this

expected number of collision = n(n-1)/2m
How is it true:

"Expected No of collision = n - occupied location"

Please explain how to understand this.

Should it not be "Expected No of collision = n - insertions into previously empty positions"?


Top Users Mar 2017
  1. rude

    4018 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2104 Points

  6. 2018

    1414 Points

  7. Vignesh Sekar

    1336 Points

  8. Bikram

    1218 Points

  9. Akriti sood

    1186 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,445 questions
26,757 answers
60,936 comments
22,954 users