2,007 views

2 Answers

Best answer
12 votes
12 votes

Distributive property is as follows:

$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$

For "divides by" lattice the meet $(\wedge)$ operation is $\gcd$ and the join $(\vee)$ operation is $lcm.$ So, we have to prove:$$ \gcd (a, lcm(b, c) )= lcm (\gcd(a,b), \gcd(a,c))$$ Forward Direction Proof:

Let $p$ be any prime factor of $ \gcd (a, lcm(b, c) )$ and $\alpha$ be the largest integer such that $p^\alpha$ divides $ \gcd (a, lcm(b, c) )$

$\implies p^\alpha$ divides $a$ and $p^\alpha$ divides $lcm(b, c).$

$\implies p^\alpha$ divides $a$ and $(p^\alpha$ divides $b$ OR $p^\alpha$ divides $c)$

$\implies (p^\alpha$ divides $a$ and $p^\alpha$ divides $b)$ OR  $(p^\alpha$ divides $a$ AND $p^\alpha$ divides $c)$

$\implies (p^\alpha$ divides $\gcd(a,b))$ OR  $(p^\alpha$ divides $\gcd(a,c))$

$\implies p^\alpha $ divides $ lcm (\gcd(a,b), \gcd(a,c))$

Reverse Direction Proof:

Let $p$ be any prime factor of $ lcm (\gcd(a,b), \gcd(a,c))$ and $\alpha$ be the largest integer such that $p^\alpha$ divides $\gcd(a,b)$ or $\gcd(a,c).$ So, $p^{\alpha}$ divides $a$ and either $b$ or $c$

$\implies p^\alpha$ divides both $a$ and $lcm(b,c).$

$\implies p^\alpha$ divides $\gcd(a, lcm(b,c))$

Hence, $ \gcd (a, lcm(b, c) )= lcm (\gcd(a,b), \gcd(a,c))$

3 votes
3 votes

 we can take any example to show it distributive  and solve it. and we will find it is distributive

-----------------------------------------------------------------------------------------------------------------------

if N is square free number then it will be boolean algebra

edited by

Related questions

21 votes
21 votes
2 answers
1
makhdoom ghaya asked Nov 19, 2016
3,936 views
Match the pairs in the following questions:$$\begin{array}{|ll|ll|}\hline (a) & \text{Groups} & (p) & \text{Associativity} \\\hline (b) & \text{Semigroups} & (q) & \text...
0 votes
0 votes
0 answers
2