GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
193 views

The number of min heap trees are possible with 15 elements such that every leaf node must be greater than all non-leaf nodes of the tree are ________

asked in DS by Boss (8.7k points)   | 193 views

2 Answers

0 votes

Suppose consider 15 elements 1,2,3,4,....15.

It is min heap ,level by level elements are stored.Root is at 1st level.

1st level; 1

2nd level: 2,3

3rd level: 4,5,6,7

4th level: 8,9,10,11,12,13,14,15.

In the second level elements are nodes 2,3 occupies 2 ways.no matter because it satisfies the heap property.

In the 3rd level also same nodes are 4,5,6,7 can be arranged in 4! ways.

In the 4th level 8!

SO TOTAL NO OF TREES ARE 1!*2!*4!*8*=1935360

answered by Veteran (10.9k points)  
What about a heap like this:

1st level: 1

2nd level: 2 5

3rd level: 3 4 6 7

4th level: 8 9 10 11 12 13 14 15

This is also valid according to the question but the answer does not account for these type of heaps.
i miss it,but this type of problems construct every min heap tree construction is so difficult.

so i think nearest no of min neaps consideration is better.
0 votes
Ans should be 8!*7! max 8 values will be tere in leaf, there are 8 nodes they can be arrange in any way and 7 in non leaf they can be arrange in any way.
answered by Junior (811 points)  


Top Users Jul 2017
  1. Bikram

    4062 Points

  2. manu00x

    2464 Points

  3. Debashish Deka

    1850 Points

  4. joshi_nitish

    1658 Points

  5. Arjun

    1294 Points

  6. Hemant Parihar

    1184 Points

  7. Arnab Bhadra

    1112 Points

  8. Shubhanshu

    1054 Points

  9. Ahwan

    900 Points

  10. rahul sharma 5

    706 Points


24,023 questions
30,966 answers
70,346 comments
29,342 users