First time here? Checkout the FAQ!
+6 votes

A relation R is defined on ordered pairs of integers as follows: $$(x,y)R(u,v) \text{ if } x<u \text{ and } y>v$$ Then R is:

  1. Neither a Partial Order nor an Equivalence Relation
  2. A Partial Order but not a Total Order
  3. A total Order
  4. An Equivalence Relation
asked in Set Theory & Algebra by Loyal (4k points)   | 304 views

2 Answers

+9 votes
Best answer
ans is (A).. because the relation is not reflexive.. which is a necessary condition for both partial order and equivalence realtion..!!
answered by Loyal (4.7k points)  
selected by
not reflexive in all cases
For reflexivity, (X,Y) R (X,Y) , which here requires x<x and y<y and this is not possible in this relation.
0 votes
For a relation to be partial order or equivalence relation it must be reflexive.
i.e. (x,y) is some element of the set then (x,y)R(x,y), but this doesn't satisfy the given condition of x<x, y>y

Option A
answered by Active (1.6k points)  

Related questions

Top Users Apr 2017
  1. akash.dinkar12

    3366 Points

  2. Divya Bharti

    2536 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Shubham Sharma 2

    1610 Points

  7. Debashish Deka

    1584 Points

  8. Prashant.

    1462 Points

  9. Arunav Khare

    1444 Points

  10. Kapil

    1414 Points

Monthly Topper: Rs. 500 gift card

22,072 questions
28,030 answers
24,128 users