First time here? Checkout the FAQ!
+1 vote
Which of the following statement/s representing One-to-One Function.

S1; ∀a∀b(f (a) = f (b) → a = b)

S2: ∀a∀b( a ≠ b→f (a) ≠ f (b) )

S3:  ∀a∀b(a = b → f (a) = f (b)),

S4:  ∀a∀b(f (a) ≠ f (b) → a ≠ b)
asked in Mathematical Logic by Veteran (10.8k points)   | 107 views
I think all are representing one-to-one function.

1 Answer

+4 votes

From the definition of one one function :

 The function f is injective(synonym of one-one) if and only if for all a and b in A, if f(a) = f(b), then a = b; that is, f(a) = f(b) implies a = b.  Equivalently, if a ≠ b, then f(a) ≠ f(b).

So if we represent them in logic form , we get S1 is immediate logical translation of an statement..And since implication represented by S1 is true , so is its contrapositive which is represented by S2 ..

So S1 and S2 are valid logical propositions regarding one one functions..

answered by Veteran (68.7k points)  
Why $S_3$ is false?
@habib thnx for rply
can u plzz tell me what is wrong in S3 and S4. ??
This is just the mathematical definition of one one function which is one way implication..

And we know converse of one way implication is not necessarily true..
@Habib. every statement is half correct . It has to be:

(a=b) ==> f(a)=f(b)    ^  (a$\neq$b) ==> f(a)$\neq$f(b)

Else, I can have one-many functions as well.

Top Users Aug 2017

    4654 Points

  2. Bikram

    4012 Points

  3. akash.dinkar12

    3136 Points

  4. rahul sharma 5

    2832 Points

  5. manu00x

    2644 Points

  6. makhdoom ghaya

    2370 Points

  7. just_bhavana

    2040 Points

  8. Tesla!

    1742 Points

  9. pawan kumarln

    1574 Points

  10. learner_geek

    1554 Points

24,864 questions
31,941 answers
30,062 users