GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
102 views
Which of the following statement/s representing One-to-One Function.

S1; ∀a∀b(f (a) = f (b) → a = b)

S2: ∀a∀b( a ≠ b→f (a) ≠ f (b) )

S3:  ∀a∀b(a = b → f (a) = f (b)),

S4:  ∀a∀b(f (a) ≠ f (b) → a ≠ b)
asked in Mathematical Logic by Veteran (10.5k points)   | 102 views
I think all are representing one-to-one function.

1 Answer

+4 votes

From the definition of one one function :

 The function f is injective(synonym of one-one) if and only if for all a and b in A, if f(a) = f(b), then a = b; that is, f(a) = f(b) implies a = b.  Equivalently, if a ≠ b, then f(a) ≠ f(b).

So if we represent them in logic form , we get S1 is immediate logical translation of an statement..And since implication represented by S1 is true , so is its contrapositive which is represented by S2 ..

So S1 and S2 are valid logical propositions regarding one one functions..

answered by Veteran (65.1k points)  
Why $S_3$ is false?
@habib thnx for rply
can u plzz tell me what is wrong in S3 and S4. ??
This is just the mathematical definition of one one function which is one way implication..

And we know converse of one way implication is not necessarily true..
@Habib. every statement is half correct . It has to be:

(a=b) ==> f(a)=f(b)    ^  (a$\neq$b) ==> f(a)$\neq$f(b)

Else, I can have one-many functions as well.


Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2734 Points

  5. Debashish Deka

    2592 Points

  6. 2018

    1544 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1342 Points

  9. Bikram

    1312 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,508 questions
26,832 answers
61,091 comments
23,146 users