GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
104 views
The number of min heap trees are possible with 15 elements such that every leaf node must be greater than all non-leaf nodes of the tree are ________.
asked in DS by Junior (897 points)   | 104 views

2 Answers

+5 votes
Best answer

at first level,there can be only 1..hence only 1 way

at second level,there can be 2 or 3 ,hence 2 ways

at third level,there can be 4,or 5 or 6 or 7 ,hence 4! ways

at fourth level,there can be 8 or 9or 10 or 11 or 12 or 13 or 14 or 15 ,hence 8! ways

so,total number of min heaps are 1*2* 4! * 8! ways . It looks like this ....


But actually, question only asks to handle leaf nodes not internal nodes, hence the numbers 2,3,4,5,6,7 can be arranged any way.

At root, 1 is for sure fixed, but for 2,3,4,5,6,7 , total ways will be 

$C(6,3) * 2! * 1 * 2! * 8! = 3225600 $ ways.


PS: $C(6,3)$ :- Choose any three elements for left $3$ positions and arrange them in $2!$ ways.

Then, right $3$ positions can be permuted in $2!$ ways .

 

answered by Veteran (12.3k points)  
edited by
–1 vote
is it 274560
answered by Junior (531 points)  


Top Users Mar 2017
  1. rude

    4018 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2104 Points

  6. 2018

    1414 Points

  7. Vignesh Sekar

    1336 Points

  8. Bikram

    1218 Points

  9. Akriti sood

    1186 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,445 questions
26,757 answers
60,936 comments
22,954 users