GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
102 views
The number of min heap trees are possible with 15 elements such that every leaf node must be greater than all non-leaf nodes of the tree are ________.
asked in DS by Junior (811 points)   | 102 views

2 Answers

+5 votes
Best answer

at first level,there can be only 1..hence only 1 way

at second level,there can be 2 or 3 ,hence 2 ways

at third level,there can be 4,or 5 or 6 or 7 ,hence 4! ways

at fourth level,there can be 8 or 9or 10 or 11 or 12 or 13 or 14 or 15 ,hence 8! ways

so,total number of min heaps are 1*2* 4! * 8! ways . It looks like this ....


But actually, question only asks to handle leaf nodes not internal nodes, hence the numbers 2,3,4,5,6,7 can be arranged any way.

At root, 1 is for sure fixed, but for 2,3,4,5,6,7 , total ways will be 

$C(6,3) * 2! * 1 * 2! * 8! = 3225600 $ ways.


PS: $C(6,3)$ :- Choose any three elements for left $3$ positions and arrange them in $2!$ ways.

Then, right $3$ positions can be permuted in $2!$ ways .

 

answered by Veteran (11k points)  
edited by
–1 vote
is it 274560
answered by Junior (531 points)  
Members at the site
Top Users Feb 2017
  1. Arjun

    4676 Points

  2. Bikram

    4004 Points

  3. Habibkhan

    3738 Points

  4. Aboveallplayer

    2966 Points

  5. sriv_shubham

    2278 Points

  6. Smriti012

    2212 Points

  7. Arnabi

    1814 Points

  8. Debashish Deka

    1788 Points

  9. sh!va

    1444 Points

  10. mcjoshi

    1444 Points

Monthly Topper: Rs. 500 gift card

20,788 questions
25,938 answers
59,532 comments
21,923 users