GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
106 views
The number of min heap trees are possible with 15 elements such that every leaf node must be greater than all non-leaf nodes of the tree are ________.
asked in DS by Junior (947 points)   | 106 views

2 Answers

+5 votes
Best answer

at first level,there can be only 1..hence only 1 way

at second level,there can be 2 or 3 ,hence 2 ways

at third level,there can be 4,or 5 or 6 or 7 ,hence 4! ways

at fourth level,there can be 8 or 9or 10 or 11 or 12 or 13 or 14 or 15 ,hence 8! ways

so,total number of min heaps are 1*2* 4! * 8! ways . It looks like this ....


But actually, question only asks to handle leaf nodes not internal nodes, hence the numbers 2,3,4,5,6,7 can be arranged any way.

At root, 1 is for sure fixed, but for 2,3,4,5,6,7 , total ways will be 

$C(6,3) * 2! * 1 * 2! * 8! = 3225600 $ ways.


PS: $C(6,3)$ :- Choose any three elements for left $3$ positions and arrange them in $2!$ ways.

Then, right $3$ positions can be permuted in $2!$ ways .

 

answered by Veteran (12.9k points)  
edited by
–1 vote
is it 274560
answered by Junior (531 points)  


Top Users Apr 2017
  1. akash.dinkar12

    3660 Points

  2. Divya Bharti

    2580 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Debashish Deka

    1614 Points

  7. Shubham Sharma 2

    1610 Points

  8. Prashant.

    1492 Points

  9. Arjun

    1472 Points

  10. Arunav Khare

    1464 Points

Monthly Topper: Rs. 500 gift card

22,088 questions
28,063 answers
63,298 comments
24,173 users