GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
217 views

How many different equivalence relations with exactly three equivalence classes are there on a set with 5 elements

  1. 10
  2. 15
  3. 25
  4. 30

 

asked in Set Theory & Algebra by Veteran (42.7k points)  
edited by | 217 views
25 is the answer ??
yes explain plz

1 Answer

+8 votes
Best answer
  • One Euivelence relation creates one partition.
  • S = $\left \{ a,b,c,d,e \right \}$ ,here one possible parition is = $\left \{ \left \{ a,b \right \} , \left \{ c,d \right \} , \left \{ e \right \} \right \}$ . Tis partition has 3 groups. Corresponding EQ relation has 3 EQ classes. Note that this partition is unordered..
  • So, no of different unordered partitions = No of equivalence relations.

Here the condition is we need only 3 equivalence classes. So, the partition has to be done in 3 unordered groups.

 

$$\begin{align*} \frac{5!}{1!1!3!}.\frac{1}{2!} + \frac{5!}{2!1!2!}.\frac{1}{2!} = 10 + 15 = 25 \\ \end{align*}$$ 

In case if we need maximum possible EQ relations on 5 elements.

$\begin{align*} 5 &\rightarrow 5\Rightarrow \frac{5!}{5!} = 1\\ \\ \hline \\ &\rightarrow 4 \qquad 1 \Rightarrow \frac{5!}{4!1!} = 5 \\ \\ \hline \\ &\rightarrow 3 \qquad 2 \Rightarrow \frac{5!}{3!2!} = 10 \\ \\ \hline \\ &\rightarrow 3 \qquad 1 \qquad 1 \Rightarrow \frac{5!}{3!1!1!}*\frac{1}{2!} = 10 \\ \\ \hline \\ &\rightarrow 2 \qquad 2 \qquad 1 \Rightarrow \frac{5!}{2!2!1!}*\frac{1}{2!} = 15 \\ \\ \hline \\ &\rightarrow 2 \qquad 1 \qquad 1 \qquad 1 \Rightarrow \frac{5!}{2!1!1!1!}*\frac{1}{3!} = 10 \\ \\ \hline \\ &\rightarrow 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \Rightarrow \frac{5!}{1!1!1!1!1!}*\frac{1}{5!} = 1 \\ \\ \hline \\ &\Rightarrow \text{Total} = 1+5+10+10+15+10+1 = 52 \end{align*}$

The procedure for partitioning is , indistinguishable $\rightarrow$ indistinguishable but because of the distinct elements we need to further evaluation.

Graphically we were interested in the rectangle shown below containing 25 EQ relation or partitions.

answered by Veteran (45.6k points)  
edited by
This is also Bell Number for maximum case, right ?
yes :) $B_5$
thanks for ur detailed ans  , but why u have divided it by 2! in case of 3 1  1   and 2  2  1   

and by 3!  in  2   1   1   1 and so on
if we have a set {a,b,c,d} and two indistinct boxes

To allocate {a,b,c,d}...two-and-two,  in those two boxes we have only 3 choices. $\frac{4!}{2!2!}*\frac{1}{2!} = 3$

those are $\left \{ \left \{ a,b \right \} ,\left \{ c,d \right \} \right \} , \ \left \{ \left \{ a,c \right \} ,\left \{ b,d \right \} \right \} , \ \left \{ \left \{ a,d \right \} ,\left \{ b,c \right \} \right \}$

No need to put a in box2 and count again. because boxes are indistinct.

In analogy to these boxes, those groups of a partition are also same,only the elements inside a group are distinct.


Top Users Apr 2017
  1. akash.dinkar12

    3660 Points

  2. Divya Bharti

    2580 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Debashish Deka

    1614 Points

  7. Shubham Sharma 2

    1610 Points

  8. Prashant.

    1492 Points

  9. Arjun

    1472 Points

  10. Arunav Khare

    1464 Points

Monthly Topper: Rs. 500 gift card

22,088 questions
28,063 answers
63,298 comments
24,173 users