GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
645 views

If A3x3 is a matrix with |A| = 2. What is the determinant of Adj (Adj (Adj A))?

asked in Linear Algebra by Active (2.1k points)   | 645 views

 

|Adj (Adj (Adj A)) | = |A| ((n-1)^3)

|A|=2

|Adj (Adj (Adj A)) |  = 2^8 =256

1 Answer

+7 votes
Best answer

We know :

| Adj(A) |  = |A|n-1

Now extending this result we can solve as :

          Adj(A) . Adj(Adj(A))  = |Adj(A)| . I where I is identity matrix

 ==>  | Adj(A) . Adj(Adj(A)) |  =  |Adj(A)|n

 ==>  | Adj(Adj(A)) |          =   |Adj(A)|n-1   = |A|(n-1)^2

 ==> | Adj(Adj(A)) * Adj( Adj(Adj(A)))|    =  | Adj(Adj(A)) |n

 ==> | Adj( Adj(Adj(A))) |      =  | Adj(Adj(A)) |n-1

 ==>  | Adj( Adj(Adj(A))) |     =  | A |(n-1)^3

Now n = 3 here and given |A|  = 2

Therefore 

          | Adj( Adj(Adj(A))) |    = 22^3

==>    | Adj( Adj(Adj(A))) |    = 256

Hence 256 is the correct answer..

answered by Veteran (66.6k points)  
selected by


Top Users Jul 2017
  1. Bikram

    3946 Points

  2. manu00x

    2464 Points

  3. Debashish Deka

    1842 Points

  4. joshi_nitish

    1650 Points

  5. Arjun

    1268 Points

  6. Hemant Parihar

    1184 Points

  7. Arnab Bhadra

    1100 Points

  8. Shubhanshu

    1052 Points

  9. Ahwan

    900 Points

  10. rahul sharma 5

    692 Points


24,016 questions
30,946 answers
70,303 comments
29,333 users