GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
855 views

If A3x3 is a matrix with |A| = 2. What is the determinant of Adj (Adj (Adj A))?

asked in Linear Algebra by Active (2.1k points)   | 855 views

 

|Adj (Adj (Adj A)) | = |A| ((n-1)^3)

|A|=2

|Adj (Adj (Adj A)) |  = 2^8 =256

1 Answer

+7 votes
Best answer

We know :

| Adj(A) |  = |A|n-1

Now extending this result we can solve as :

          Adj(A) . Adj(Adj(A))  = |Adj(A)| . I where I is identity matrix

 ==>  | Adj(A) . Adj(Adj(A)) |  =  |Adj(A)|n

 ==>  | Adj(Adj(A)) |          =   |Adj(A)|n-1   = |A|(n-1)^2

 ==> | Adj(Adj(A)) * Adj( Adj(Adj(A)))|    =  | Adj(Adj(A)) |n

 ==> | Adj( Adj(Adj(A))) |      =  | Adj(Adj(A)) |n-1

 ==>  | Adj( Adj(Adj(A))) |     =  | A |(n-1)^3

Now n = 3 here and given |A|  = 2

Therefore 

          | Adj( Adj(Adj(A))) |    = 22^3

==>    | Adj( Adj(Adj(A))) |    = 256

Hence 256 is the correct answer..

answered by Veteran (76.3k points)  
selected by


Top Users Sep 2017
  1. Habibkhan

    6338 Points

  2. Warrior

    2220 Points

  3. Arjun

    2158 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. SiddharthMahapatra

    1718 Points

  7. Bikram

    1716 Points

  8. makhdoom ghaya

    1660 Points

  9. A_i_$_h

    1518 Points

  10. rishu_darkshadow

    1512 Points


25,981 questions
33,556 answers
79,371 comments
31,014 users