GATE CSE
First time here? Checkout the FAQ!
x
0 votes
87 views

Which of the following is/are true ?

  • A. $\text{R}$ is a reflexive relation on a set $\text{A}$, then $\text{R}^{n}$ is reflexive for all $n\geq0$
  • B. Relation $\text{R}$ on set $A$ is reflexive if and only if inverse relation $R^{-1}$ is reflexive.
  • C  Relation $\text{R}$ on set $A$ is antisymmetric if and only $R \cap R^{-1}$   is a subest of diagonal relation $\Delta = \left \{ (a,a) \; | a \in A \right \}$
  • D. $M_{S\circ R} = M_R \; \odot M_S$ where $\odot$ is boolean product.
asked in Set Theory & Algebra by Veteran (50.9k points)  
edited by | 87 views
All seems true.

C. Let M be a adjacency matrix for R & M' be for $R^{-1}$ . M & M' are mutually transpose of each other, but diagonal remains same for both. Therefore $R\cap{R^{-1}}$ is nothing but $2^{n}$ numbers of diagonal fills of adjacency matrix which is sign of anti symmetric relations.

Let me know where I'm wrong if I'm.

Please log in or register to answer this question.



Top Users Aug 2017
  1. ABKUNDAN

    4660 Points

  2. Bikram

    4366 Points

  3. akash.dinkar12

    3258 Points

  4. rahul sharma 5

    3042 Points

  5. manu00x

    2682 Points

  6. makhdoom ghaya

    2410 Points

  7. just_bhavana

    2100 Points

  8. Tesla!

    1918 Points

  9. stblue

    1682 Points

  10. joshi_nitish

    1608 Points


24,928 questions
32,024 answers
74,385 comments
30,113 users