GATE CSE
First time here? Checkout the FAQ!
x
0 votes
78 views

Which of the following is/are true ?

  • A. $\text{R}$ is a reflexive relation on a set $\text{A}$, then $\text{R}^{n}$ is reflexive for all $n\geq0$
  • B. Relation $\text{R}$ on set $A$ is reflexive if and only if inverse relation $R^{-1}$ is reflexive.
  • C  Relation $\text{R}$ on set $A$ is antisymmetric if and only $R \cap R^{-1}$   is a subest of diagonal relation $\Delta = \left \{ (a,a) \; | a \in A \right \}$
  • D. $M_{S\circ R} = M_R \; \odot M_S$ where $\odot$ is boolean product.
asked in Set Theory & Algebra by Veteran (46.8k points)  
edited by | 78 views
All seems true.

C. Let M be a adjacency matrix for R & M' be for $R^{-1}$ . M & M' are mutually transpose of each other, but diagonal remains same for both. Therefore $R\cap{R^{-1}}$ is nothing but $2^{n}$ numbers of diagonal fills of adjacency matrix which is sign of anti symmetric relations.

Let me know where I'm wrong if I'm.

Please log in or register to answer this question.



Top Users May 2017
  1. akash.dinkar12

    3152 Points

  2. pawan kumarln

    1616 Points

  3. sh!va

    1580 Points

  4. Arjun

    1336 Points

  5. Devshree Dubey

    1230 Points

  6. Angkit

    1028 Points

  7. Debashish Deka

    1012 Points

  8. Bikram

    972 Points

  9. LeenSharma

    810 Points

  10. srestha

    662 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. pawan kumarln

    242 Points

  2. Ahwan

    138 Points

  3. joshi_nitish

    112 Points

  4. jjayantamahata

    104 Points

  5. Arjun

    64 Points


22,725 questions
29,056 answers
65,053 comments
27,566 users