GATE CSE
First time here? Checkout the FAQ!
x
0 votes
78 views

asked in Mathematical Logic by Boss (6k points)   | 78 views
in second option

,we can write (i) p -> Q ^ R (universal instatiation)

can we write (ii) as P ^ S?

because then from  (ii),we will get P (iii)& S (iv) through simplification.

from (iii) and (i), P -> Q ^ R

                            P

we get Q^ R(modes ponens) (v)

from (v),we can get Q (vi) & R (vii)(simplification)

with  (vii) and (iv) i.e R and S,we get R^ S(conjunction)

correct me if i am wrong
For 2nd premise, its given existential quantifier.  So, P^S is true only for some instances.

alright,so how will we know that for which intances we need to mark 0 in our k-map..??

so,surely this k-map is wrong cuz here,i have marked 0 for every P and evry S.caan you tell at which one to mark 0..?

P^S is SOP term, right? But there is existential quantifier.

So, when p=1 and S=1, the entries would be 1 only sometimes.

Now, Lets ignore P^S. So, remaining entries ( excluding the 2 premises)would be 1 or dont care, right?

 

Now, lets look at the conclusion.

$\exists$x { r(x) ^ s(x) }   which corresponds to third column from left.

So, you want 3rd column to be all 1's atleast once or for some instances.

 

Lets go back to $\exists$x { P(x) ^ S(x) }

So, now mark all 1's for this function because there exists atleast one instance where both P(x) and S(x) is true.

Now,  for this instance, just combine the 1's with dont care.

 

So, 2nd statement is also valid. I think I gave wrong answer initially :)

yes..i got that..thankyou so much..:-)

Please log in or register to answer this question.



Top Users May 2017
  1. akash.dinkar12

    3302 Points

  2. pawan kumarln

    1776 Points

  3. Bikram

    1646 Points

  4. sh!va

    1640 Points

  5. Arjun

    1396 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1142 Points

  8. Angkit

    1044 Points

  9. LeenSharma

    1000 Points

  10. Arunav Khare

    754 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    732 Points

  2. Arnab Bhadra

    402 Points

  3. pawan kumarln

    402 Points

  4. bharti

    304 Points

  5. LeenSharma

    238 Points


22,823 questions
29,142 answers
65,209 comments
27,666 users