GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
155 views

What should be the value of a,b and c such that the function defined below is continuous at x=0 ?

                   
                            $f\left ( x \right )=\begin{Bmatrix} \left ( 1+ax \right )^{\frac{1}{x}} & x<0 & \\ b & x=0& \\ \frac{(x+c)^{\frac{1}{3}}-1}{x}                     &x>0 & \end{Bmatrix}$

asked in Calculus by Veteran (36.3k points)   | 155 views
a = b = infinity, if c = any finite value other than 1??

If c = 1, then , b = 1/3 , a = ln (1/3).

??
Yes right.Provide the solution by considering second case.

See.. Since it is continuous at x = 0, so f(0-) = f(0+) = f(0). ------- (X)

Here f(0-) = Lim(x->0) { (1+ax)1/x } = ea .

        f(0)  = b

and  f(0+) =Lim ( x->0)  {(x + c)1/3 - 1}/ (x)

Now if c = 1 then,

         f(0+) =Lim ( x->0) {(x + 1)1/3 - 1} /(x)  => 0/0

  using L hospital rule, we can solve above limit = 1/3 .

Hence from eqn (X) , ea = b = 1/3.

  a = ln (1/3)

  b = 1/3

  c = 1.

Is it okay now  ?

yes.

1 Answer

0 votes
$a= $any value

$b=1$

$c$=$x^{3}+2x+3x^{2}+1$

Then x will be continuous at x=1

But continuous in x=0 not possible here
answered by Veteran (52.4k points)  
No .Actually we have given that  the above function is continuous at x=0 so  find the value of a,b,c.

Related questions



Top Users Mar 2017
  1. rude

    5246 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2732 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1574 Points

  7. Vignesh Sekar

    1440 Points

  8. Bikram

    1432 Points

  9. Akriti sood

    1420 Points

  10. Sanjay Sharma

    1128 Points

Monthly Topper: Rs. 500 gift card

21,553 questions
26,902 answers
61,258 comments
23,269 users