GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
183 views

What should be the value of a,b and c such that the function defined below is continuous at x=0 ?

                   
                            $f\left ( x \right )=\begin{Bmatrix} \left ( 1+ax \right )^{\frac{1}{x}} & x<0 & \\ b & x=0& \\ \frac{(x+c)^{\frac{1}{3}}-1}{x}                     &x>0 & \end{Bmatrix}$

asked in Calculus by Veteran (37.5k points)   | 183 views
a = b = infinity, if c = any finite value other than 1??

If c = 1, then , b = 1/3 , a = ln (1/3).

??
Yes right.Provide the solution by considering second case.

See.. Since it is continuous at x = 0, so f(0-) = f(0+) = f(0). ------- (X)

Here f(0-) = Lim(x->0) { (1+ax)1/x } = ea .

        f(0)  = b

and  f(0+) =Lim ( x->0)  {(x + c)1/3 - 1}/ (x)

Now if c = 1 then,

         f(0+) =Lim ( x->0) {(x + 1)1/3 - 1} /(x)  => 0/0

  using L hospital rule, we can solve above limit = 1/3 .

Hence from eqn (X) , ea = b = 1/3.

  a = ln (1/3)

  b = 1/3

  c = 1.

Is it okay now  ?

yes.

1 Answer

0 votes
$a= $any value

$b=1$

$c$=$x^{3}+2x+3x^{2}+1$

Then x will be continuous at x=1

But continuous in x=0 not possible here
answered by Veteran (58.2k points)  
No .Actually we have given that  the above function is continuous at x=0 so  find the value of a,b,c.

Related questions



Top Users Sep 2017
  1. Habibkhan

    6338 Points

  2. Warrior

    2220 Points

  3. Arjun

    2162 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. SiddharthMahapatra

    1718 Points

  7. Bikram

    1716 Points

  8. makhdoom ghaya

    1660 Points

  9. A_i_$_h

    1518 Points

  10. rishu_darkshadow

    1512 Points


25,981 questions
33,556 answers
79,372 comments
31,014 users