GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
112 views

Consider the sequence $S_0, S_1, S_2, \dots$ defined as follows: $S_0=0, \: S_1=1 \: $ and $S_n=2S_{n-1} + S_{n-2}$ for $n \geq 2$. Which of the following statements is FALSE?

  1. for every $n \geq 1$, $S_{2n}$ is even
  2. for every $n \geq 1$, $S_{2n+1}$ is odd
  3. for every $n \geq 1$, $S_{3n}$ is multiple of 3
  4. for every $n \geq 1$, $S_{4n}$ is multiple of 6
  5. none of the above
asked in Set Theory & Algebra by Veteran (77.3k points)   | 112 views
$S_3 = 5$ and is not a multiple of $3$. C can be answer.

1 Answer

+4 votes
Best answer
$S_n = 2S_{n-1} + S_{n-2}$

Characterstic polynomial for this recurrence is $x^2 = 2x + 1$

$x^2 - 2x - 1 = 0 \color{maroon}{\Rightarrow x_1 = (1+\sqrt{2}), x_2 = (1-\sqrt{2})}$

The solution to the recurrence relation is of the form : $S_n = C_1*x_1^n + C_2*x_2^n$

Putting $S(0) = 0$, $\color{blue}{C_1 + C_2 = 0}$

Putting $S(1) = 1$, $\color{blue}{C_1*(1+\sqrt{2}) + C_2*(1-\sqrt{2}) = 1}$

Solving these two, we get $C_1 = \frac{1}{2\sqrt{2}}$ and $C_2 = -\frac{1}{2\sqrt{2}}$

$\large S_n = \frac{1}{2\sqrt{2}} \bigg((1+\sqrt{2})^n - (1-\sqrt{2})^n\bigg)$

$\color{navy}{S_0 = 0, S_1 = 1, S_2 = 2, S_3 = 5, S_4 = 12, S_5 = 29, S_6 = 70}$

Clearly $S_3$ and $S_6$ are not a multiple of $3$

Hence (C) is correct answer.
answered by Veteran (24.7k points)  
selected by
Answer:

Related questions



Top Users May 2017
  1. akash.dinkar12

    3578 Points

  2. pawan kumarln

    2314 Points

  3. Bikram

    1950 Points

  4. Arjun

    1852 Points

  5. sh!va

    1682 Points

  6. Debashish Deka

    1296 Points

  7. Devshree Dubey

    1282 Points

  8. Arunav Khare

    1122 Points

  9. Angkit

    1072 Points

  10. LeenSharma

    1028 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 29 - Jun 04
  1. Arunav Khare

    246 Points

  2. Arjun

    202 Points

  3. pawan kumarln

    108 Points

  4. Rupendra Choudhary

    94 Points

  5. Niharika 1

    90 Points


22,909 questions
29,243 answers
65,403 comments
27,746 users