GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
151 views
What is the coefficient of $\large\color{green}{x^{6}}$ in the following series expansion?

$$\color{maroon}{\begin{align*} \frac{1}{1-x}.\frac{1}{1-x^2}.\frac{1}{1-x^3}........ \end{align*}}$$
asked in Combinatory by Veteran (37.5k points)   | 151 views
Is it $11$?
Yes 11 partitions

1 Answer

+6 votes
Best answer
$\large \color{navy}{\frac{1}{1-x}= 1 +x + x^2 + x^3 + x^4 \dots + \infty }$
Simplifying each term, we get an equivalent expression for finding coefficient of $x^6$. Finding coefficient of $x^6$ in $\color{green}{\frac{1}{1-x}\frac{1}{1-x^2}\frac{1}{1-x^3}}\dots$ is equivalent to finding coefficient of $x^6$ in :

$\color{navy}{\begin{align*}(1+x+x^2 + \dots + x^6)(1+x^2 +x^4+x^6)(1+x^3+x^6)(1+x^4)(1+x^5)(1+x^6)\end{align*}}$

We are interested in coefficient of $x^6$. So, neglect higher powers.

$\Rightarrow (1+x+x^2 + \dots + x^6)(1+x^2 +x^4+x^6)(1+x^3+x^6)(1 + x^4 + x^5 + x^6)$

$\Rightarrow (1+x+x^2 + \dots + x^6)(1+x^2 +x^4+x^6)(1 + x^3 + x^4 + x^5 + 2x^6)$

$\Rightarrow (1+x+x^2 + x^3 + x^4 + x^5 + x^6)(1+x^2 + x^3 + 2x^4 + 2x^5 + 4x^6)$

Coefficient of $x^6$ $=  4+2+2+1+1+1 = 11$
answered by Veteran (22.2k points)  
selected by
$$\begin{align*}
G(x) = \color{green}{\frac{1}{1-x} \; \frac{1}{1-x^2}\; \frac{1} {1-x^3} \;....... \; \infty}
\end{align*}$$

$G(x)$ is a generating function. The coeffcient of $\large\color{maroon}{x^n}$ in $G(x)$ is equal to the number of unordered partitions of number $n$.

if $n = 6$, then $\rightarrow$

$$\begin{align*} 6&\rightarrow 6 \\ &\rightarrow 5 \quad 1 \\ &\rightarrow 4 \quad 2 \\ &\rightarrow 4 \quad 1\quad 1 \\ &\rightarrow 3 \quad 3 \\ &\rightarrow 3 \quad 2\quad 1 \\ &\rightarrow 3 \quad 1\quad 1\quad 1 \\ &\rightarrow 2 \quad 2\quad 2 \\ &\rightarrow 2 \quad 2\quad 1\quad 1 \\ &\rightarrow 2 \quad 1\quad 1\quad 1\quad 1 \\ &\rightarrow 1\quad 1\quad 1\quad 1\quad 1\quad 1 \\ \end{align*}$$

Total $11$ partitions. So, coefficient of $\large\color{maroon}{x^6}$ in $G(x)$ is equal to $11$.
Debashish, if it was $x^{30}$ then ??
No closed form for the number of partitions of integer $n$. You also know what will happen.
The approach suggested by @mcjoshi is easy and more generic..
$G(x)$ is standard generating function ! ..
Top Users Jan 2017
  1. Debashish Deka

    9660 Points

  2. sudsho

    5554 Points

  3. Bikram

    5280 Points

  4. Habibkhan

    4878 Points

  5. Vijay Thakur

    4498 Points

  6. Arjun

    4418 Points

  7. saurabh rai

    4236 Points

  8. Sushant Gokhale

    4140 Points

  9. Kapil

    3848 Points

  10. santhoshdevulapally

    3808 Points

Monthly Topper: Rs. 500 gift card

19,443 questions
24,221 answers
53,871 comments
20,372 users