GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
183 views
Find $\large\color{maroon}{a^n}$ for the following generating function,

$$\color{green}{\begin{align*} \frac{1}{1-2x^2} \end{align*}}$$

$\large\color{maroon}{a^n}$ = closed form of the $nth$ term in the corresponding sequence.
asked in Combinatory by Veteran (45.6k points)   | 183 views
<1,2,4,8....> ??

This is what you wanted ??
possibly a closed form

1 Answer

+3 votes
Best answer

$\frac{1}{1-2x^{2}}$ = $\frac{1}{1-\sqrt{2}x}$ * $\frac{1}{1+\sqrt{2}x}$    ................(1)

 

Now, we know that,

$\frac{1}{1-ax}$ = 1+ ax + a2x + a3x3  +..................         ..........(2)

$\frac{1}{1+ax}$ = 1- ax + a2x - a3x3  +..................         ...........(3)

 

Now, from (1) , we observe that the result is the product of 2 functions.

 

If the coefficients of function 1 are a0, a1, a2................

and that of function 2 are b0, b1, b2................

then the result of product of two functions is a function with terms having coefficients rk corresponding to ''k'th term of the sequence. The coefficients can be calculated as follows:

rk = akb0 + ak-1b1 + ak-2b2.........................+ a0bk

 

From (2) and (3), we get,

r0 = 1

r1 = 0

r2 = a2

r3 = 0

........

 

We observe that when 'k' is odd, rk = 0. If 'k' is even, rk = ak

Thus, the terms of the sequence are {1, 0, a2, 0, a4, 0, ........................}

 

Now, substitute $\sqrt{2}$ for 'a' to get the actual sequence.

answered by Veteran (14.9k points)  
selected by
nice answer.


Top Users Apr 2017
  1. akash.dinkar12

    3366 Points

  2. Divya Bharti

    2536 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Shubham Sharma 2

    1610 Points

  7. Debashish Deka

    1584 Points

  8. Prashant.

    1462 Points

  9. Arunav Khare

    1444 Points

  10. Kapil

    1414 Points

Monthly Topper: Rs. 500 gift card

22,072 questions
28,030 answers
63,191 comments
24,128 users