retagged by
1,853 views
4 votes
4 votes
Find $\large\color{maroon}{a^n}$ for the following generating function,

$$\color{green}{\begin{align*} \frac{1}{1-2x^2} \end{align*}}$$

$\large\color{maroon}{a^n}$ = closed form of the $nth$ term in the corresponding sequence.
retagged by

2 Answers

Best answer
5 votes
5 votes

$\frac{1}{1-2x^{2}}$ = $\frac{1}{1-\sqrt{2}x}$ * $\frac{1}{1+\sqrt{2}x}$    ................(1)

Now, we know that,

$\frac{1}{1-ax}$ = 1+ ax + a2x + a3x3  +..................         ..........(2)

$\frac{1}{1+ax}$ = 1- ax + a2x - a3x3  +..................         ...........(3)

Now, from (1) , we observe that the result is the product of 2 functions.

If the coefficients of function 1 are a0, a1, a2................

and that of function 2 are b0, b1, b2................

then the result of product of two functions is a function with terms having coefficients rk corresponding to ''k'th term of the sequence. The coefficients can be calculated as follows:

rk = akb0 + ak-1b1 + ak-2b2.........................+ a0bk

From (2) and (3), we get,

r0 = 1

r1 = 0

r2 = a2

r3 = 0

........

We observe that when 'k' is odd, rk = 0. If 'k' is even, rk = ak

Thus, the terms of the sequence are {1, 0, a2, 0, a4, 0, ........................}

Now, substitute $\sqrt{2}$ for 'a' to get the actual sequence.

selected by
1 votes
1 votes

Another approach using Extended Binomial Theorem

$G(x) = \frac{1}{(1-2x^{2})} = (1-2x^{2})^{-1} $

from the Extended Binomial coefficient, (Ref)

$a^{n}$ = $\binom{- 1}{n}* (-2{x}^{2})^{n}$                        ,   ( where $\binom{n}{r}$  is binomial coefficient $\forall n \epsilon \mathbb{R}$ )

      = $\binom{- 1}{n}* (-1)^n*(2{x}^{2})^{n}$

      = $ (-1)^{n} * \binom{1+n -1}{n} * (-1)^n*(2{x}^{2})^{n}$

      = $ \binom{n}{n} * 2^{n} x^{2n}$ 

      = $\frac{n!}{{n!}*{0!}} * 2^{n} x^{2n} $

$a^{n}$ = $2^{n} x^{2n}$

then G(x) = $2^{0} x^{0} + 2^{1} x^{2} + 2^{2} x^{4}+ 2^{3} x^{6} + . . . $

                 = $1 + 2x^{2} + 4 x^{4}+ 8 x^{6} + . . . $

Sequence of {$a^{n}$} = $\left \langle a^{0}, a^{1}, a^{2}, a^{3}, a^{4}, . . .  \right \rangle$  is given as 

{$a^{n}$}  = $\left \langle 2^{0}, 0, 2^{1}, 0, 2^{2}, . . .  \right \rangle$ = $\left \langle 1, 0, 2, 0, 4, . . .  \right \rangle$

Hence,

$a^{n} $= $\left\{\begin{matrix}
2^{\frac{n}{2}} &,n = 2k \mathit{(even)}\\ 
0   &   , n = 2k+ 1\mathit{ (odd) }
\end{matrix}\right.$

Related questions

0 votes
0 votes
1 answer
1
1 votes
1 votes
0 answers
2
air1ankit asked Oct 9, 2017
400 views
generating function shifted Fibonacci sequence (what we actually do while finding generating function)