GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
87 views

For a set $A$ define $\mathcal{P}(A)$ to be the set of all subsets of $A$. For example, if $A = \{1, 2\}$ then $\mathcal{P} (A) = \{ \emptyset, \{1, 2\}, \{1\}, \{ 2 \} \}$. Let $A \rightarrow \mathcal{P}(A)$ be a function and $A$ is not empty. Which of the following must be TRUE?

  1. $f$ cannot be one-to-one (injective)
  2. $f$ cannot be onto (surjective)
  3. $f$ is both one-to-one and onto (bijective)
  4. there is no such $f$ possible
  5. if such a function $f$ exists, then $A$ is infinite
asked in Set Theory & Algebra by Veteran (73.3k points)   | 87 views

1 Answer

+7 votes
Best answer

Even if it can be one-to-one in the following way,

But, It cannot be onto,because, the number of elements in domain $(A)$  $<$ the number of elements in co-domain ($P(A)$) . For a function to be onto, the domain should be able to cover all elements of co-domain with each element of the domain having exactly one image in co-domain.
so option(B)

answered by Boss (9.6k points)  
edited by
Top Users Jan 2017
  1. Debashish Deka

    8280 Points

  2. sudsho

    5042 Points

  3. Habibkhan

    4716 Points

  4. Vijay Thakur

    4468 Points

  5. Bikram

    4368 Points

  6. saurabh rai

    4212 Points

  7. Arjun

    4052 Points

  8. santhoshdevulapally

    3732 Points

  9. GateSet

    3312 Points

  10. Sushant Gokhale

    3306 Points

Monthly Topper: Rs. 500 gift card

19,138 questions
24,044 answers
52,771 comments
20,281 users