GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
105 views

For a set $A$ define $\mathcal{P}(A)$ to be the set of all subsets of $A$. For example, if $A = \{1, 2\}$ then $\mathcal{P} (A) = \{ \emptyset, \{1, 2\}, \{1\}, \{ 2 \} \}$. Let $A \rightarrow \mathcal{P}(A)$ be a function and $A$ is not empty. Which of the following must be TRUE?

  1. $f$ cannot be one-to-one (injective)
  2. $f$ cannot be onto (surjective)
  3. $f$ is both one-to-one and onto (bijective)
  4. there is no such $f$ possible
  5. if such a function $f$ exists, then $A$ is infinite
asked in Set Theory & Algebra by Veteran (75.6k points)   | 105 views

1 Answer

+8 votes
Best answer

Even if it can be one-to-one in the following way,

But, It cannot be onto,because, the number of elements in domain $(A)$  $<$ the number of elements in co-domain ($P(A)$) . For a function to be onto, the domain should be able to cover all elements of co-domain with each element of the domain having exactly one image in co-domain.
so option(B)

answered by Veteran (11.4k points)  
edited by
Top Users Feb 2017
  1. Arjun

    5386 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2236 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,021 answers
59,689 comments
22,131 users