GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
97 views

A vertex colouring of a graph $G=(V, E)$ with $k$ coulours is a mapping $c: V \rightarrow \{1, \dots , k\}$ such that $c(u) \neq c(v)$ for every $(u, v) \in E$. Consider the following statements:

  1. If every vertex in $G$ has degree at most $d$ then $G$ admits a vertex coulouring using $d+1$ colours.
  2. Every cycle admits a vertex colouring using 2 colours
  3. Every tree admits a vertex colouring using 2 colours

Which of the above statements is/are TRUE? Choose from the following options:

  1. only i
  2. only i and ii
  3. only i and iii
  4. only ii and iii
  5. i, ii, and iii
asked in Graph Theory by Veteran (76.2k points)   | 97 views

1 Answer

+2 votes
Best answer
i is true, since in worst case the graph can be complete. So, d+1 colours are necessary for graph containing vertices with degree atmost 'd' .

ii is false since cyles with odd no of vertices require 3 colours.

iii is true, since each level of the tree must be coloured in an alternate fashion. We can do this with two colours.

Therefore, option c is correct.
answered by Active (1k points)  
selected by


Top Users Apr 2017
  1. akash.dinkar12

    3514 Points

  2. Divya Bharti

    2546 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Shubham Sharma 2

    1610 Points

  7. Debashish Deka

    1588 Points

  8. Arunav Khare

    1454 Points

  9. Kapil

    1424 Points

  10. Arjun

    1420 Points

Monthly Topper: Rs. 500 gift card

22,076 questions
28,042 answers
63,233 comments
24,135 users