GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
80 views

A vertex colouring of a graph $G=(V, E)$ with $k$ coulours is a mapping $c: V \rightarrow \{1, \dots , k\}$ such that $c(u) \neq c(v)$ for every $(u, v) \in E$. Consider the following statements:

  1. If every vertex in $G$ has degree at most $d$ then $G$ admits a vertex coulouring using $d+1$ colours.
  2. Every cycle admits a vertex colouring using 2 colours
  3. Every tree admits a vertex colouring using 2 colours

Which of the above statements is/are TRUE? Choose from the following options:

  1. only i
  2. only i and ii
  3. only i and iii
  4. only ii and iii
  5. i, ii, and iii
asked in Graph Theory by Veteran (75.6k points)   | 80 views

1 Answer

+2 votes
Best answer
i is true, since in worst case the graph can be complete. So, d+1 colours are necessary for graph containing vertices with degree atmost 'd' .

ii is false since cyles with odd no of vertices require 3 colours.

iii is true, since each level of the tree must be coloured in an alternate fashion. We can do this with two colours.

Therefore, option c is correct.
answered by Active (1k points)  
selected by
Top Users Feb 2017
  1. Arjun

    5224 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3748 Points

  4. Aboveallplayer

    2986 Points

  5. Debashish Deka

    2356 Points

  6. sriv_shubham

    2298 Points

  7. Smriti012

    2142 Points

  8. Arnabi

    2008 Points

  9. sh!va

    1654 Points

  10. mcjoshi

    1628 Points

Monthly Topper: Rs. 500 gift card

20,832 questions
25,989 answers
59,623 comments
22,046 users